
SPARCC code supplement
SPARCC package options

Phenotype simulation

The output of the CC data simulation is a matrix of outcomes, where each column of y(s) is the phenotype generated by the following
equation:

y = 1µ + ZXβ︸︷︷︸
QTL effect

+ Zu︸︷︷︸
Strain effect

+ ε︸︷︷︸
Noise

,

where 1 is an N-vector of 1’s, µ is an intercept, Z is an N × n incidence matrix mapping individuals to strains, X is an n × m allele
dosage matrix mapping strains to their estimated dosage of each of the m alleles, β is an m-vector of allele effects, u is an n-vector
of strain effects (representing polygenic background variation), and ε is an N-vector of unstructured, residual error. The matrix of
phenotypes is simulated using the sim.CC.data() function. The following options control various aspects of the simulation and the
simulated QTL.

QTL effect:

• qtl.effect.size

– 0 ≤ qtl.effect.size < 1 − strain.effect.size
– This argument represents h2

QTL, such that β ∼ N(0, Ih2
QTL).

– A specific β can specified with the beta argument, though it will be scaled to match qtl.effect.size. If beta=NULL, then
β is sampled accordingly.

• num.alleles (DEFAULT = 8)

– 2 ≤ num.alleles ≤ 8

• M.ID

– Rather than specifying num.alleles and then sampling M, these can be fixed with the M.ID argument.
– Expects strings of the form "A,B,C,D,E,F,G,H", with each letter corresponding to a founder strain, taking an integer value

0-7, representing functional alleles.
– Example: M.ID="0,0,0,0,1,1,1,1" represents a bi-allelic causal variant, in which the first four strains have one allele, and

the last four having the other.

• CC.lines (DEFAULT = NULL)

– This argument allows the user to provide a vector of CC strain IDs on which to base the power calculation. The CC genomes,
along with locus, will determine D in the following equation: X = DAM.

– If CC.lines = NULL, then SPARCC will sample num.lines from all available strains.

* vary.lines (DEFAULT = TRUE)
· If vary.lines = TRUE, the set of strains for each simulation will be sampled and vary.
· If vary.lines = FALSE, the set of strains will be sampled once, and used for each simulated outcome.

• locus (DEFAULT = NULL)

– This argument allows the user to specify a specific locus for the simulated QTL, in effect determining the haplotype dosage
matrix D.

– If the argument is left empty, SPARCC will sample loci uniformly from the CC genomes, thus providing power estimates
averaged over genomic positions.

• impute (DEFAULT = TRUE)

– If impute=TRUE, then D is sampled from the probabilistically reconstructed diplotypes at the QTL

Di ∼ Cat(Pi)

where Cat(.) is a categorical distribution and P is a matrix of diplotype probabilities for the sampled CC genomes at the
QTL.

– If impute=FALSE, then D = P in the simulation procedure.

• scale.qtl.mode (DEFAULT = "B")

– If scale.qtl.mode="B", V(2β) is scaled to qtl.effect.size, where var is the maximum likelihood estimate of variance
rather than sample variance, such that var = n−1

n s, where s2 is the sample variance and n is the number of individuals. This
scaling sets the QTL effect size with respect to a theoretical population that is evenly balanced with respect to functional
alleles.

1



– If scale.qtl.mode="MB", V(2Mβ) is scaled to qtl.effect.size, setting the QTL effect size to a theoretical population
with a specific frequency of functional alleles among the founder strains. The effect size here is dependent on M but
independent of D, and the proportion of variance explained by the QTL in the mapping population will deviate from h2

QTL
due to imbalance D but not in M.

– If scale.qtl.mode="DAMB", V(DAMβ) is scaled to qtl.effect.size, setting the QTL effect size to a specific set of CC
strains and allele series.

– If scale.qtl.mode="none", β is not scaled, allowing the user to specify an effect vector and not have it modified.

Strain effect:

• strain.effect.size

– 0 ≤ strain.effect.size ≤ 1 − qtl.effect.size
– This argument specifies h2

strain, such that u ∼ N(0, Ih2
strain).

Additional options:

• num.sim

– This argument specifies SPARCC to simulate s samples of y.

• num.replicates

– This argument allows the user to set the number r of replicates of each CC strain. The reproducibility of CC genomes is an
important feature, allowing noise variation to be reduced.

– SPARCC currently requires all CC lines to have the same number of replicates.

Genome scans
Each phenotype from the simulation procedure is then evaluated via QTL mapping. The SPARCC function for running genome
scans from the simulated data is run.sim.scans(), The primary argument is sim.data. There are additional arguments to restrict the
scans to a subset of the chromosomes, to a subset of the simulated phenotypes, or to a subset of loci. Last, the user can provide the
pre-computed QR decompositions and specify whether the output should return those decompositions for further use with additional
simulations, although this can be expensive in terms of memory.

Simple tutorial for SPARCC simulation, scans, and power

This example is computationally efficient because the CC strains are not varied across simulations. Varying CC strains increases the
computational expense, which was done for the reported results. Generates Figure 2 from the manuscript.

###-----------------------------------------------------
### Useful functions for parsing haplotype data
> h <- DiploprobReader$new("./sparcc_cache/")
> set.seed(100)

### Grabbing random sample of 65 CC strains
> these.cc.lines <- sample(h$getSubjects(), size=65)

> library(sparcc)
### Simulate 5 data sets:
#### Specified 65 CC strains
#### 5 replicates of each
#### 2 functional alleles, allelic series not specified
#### QTL effect size of 10
#### Background Strain effect of 0
> simple.data <- sim.CC.data(genomecache="./sparcc_cache/",

CC.lines=these.cc.lines,
num.replicates=5,
num.sim=5,
num.alleles=2,
qtl.effect.size=0.1,
strain.effect.size=0)

### Genome scans
> simple.scans <- run.sim.scans(sim.data=simple.data,

return.all.sim.qr=TRUE)

### Generating permutation index
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> perm.index <- generate.perm.matrix(num.lines=65,
num.perm=100)

### Permutation scans
> thresh.scans <- run.perm.scans(perm.matrix=perm.index,

sim.CC.object=simple.data,
sim.CC.scans=simple.scans)

### Calculating significance thresholds
> all.thresh <- get.thresholds(thresh.scans=thresh.scans)

### Power estimate
> pull.power(sim.scans=simple.scans,
thresh=all.thresh)

[1] 0.8

### Plot a genome scan of a single simulated phenotype
> single.sim.plot(simple.scans,

thresh=all.thresh,
phenotype.index=1)

###-----------------------------------------------------

Run-time performance of tutorial
The simple example was run locally on an Early 2015 MacBook Pro with a 2.9 GHz Intel Core i5 processor and 8 GB of RAM. The data
simulation and genome-wide scans for five phenotypes took 34.13 seconds. Computational time increases linearly with number of
phenotypes simulated. Computational times will also decrease for lower numbers of CC strains. 100 permutations for 5 simulated
phenotypes took 8.73 minutes. Although the time expense for these simulations is not trivial, the overall process is highly optimized;
this simple example involves fitting 5 phenotypes × 17900 loci × 100 permutation alternative models. The process can be sped up
using a parallel computing environment, as we do with the following large scale analysis. Highly specific power calculations for an
experiment are feasible on a local computer using a single core.

Simple tutorial for SPARCC power projection

This example code demonstrates how to calculate power estimates from the dataset stored within SPARCC using projection and
interpolation. This code produces Figure S1 in the Supplement.

###-----------------------------------------------------
### r1.dat is included in SPARCC
### Project and interpolate power estimates for
### experiments with 3 replicates
> r3.interp.dat <- interpolate.table(r1.results=r1.dat,

num.replicates=3,
n.alleles=2)

### Project and interpolate power estimates for
### experiments with 5 replicates
> r5.interp.dat <- interpolate.table(r1.results=r1.dat,

num.replicates=5,
n.alleles=2)

### Plotting power curves
> power.plot(results=r1.dat,

qtl.effect.size=0.3,
n.alleles=2)

> add.curve.to.power.plot(results=r3.interp.dat,
qtl.effect.size=0.3,
n.alleles=2)

> add.curve.to.power.plot(results=r5.interp.dat,
qtl.effect.size=0.3,
n.alleles=2)

###-----------------------------------------------------
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