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Figure S1. Evidence of clustering among individuals from the ARIC study. Principal component 3 (y-axis) 

is plotted against principal component 1 (x-axis) for EAs (blue) and AAs (orange), after standard quality control 

procedures as explained in the manuscript. 
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Figure S2. Histograms of adjusted phenotypes for EAs and AAs. In each plot, frequency distributions of (sex-

age-ethnic group-adjusted) adjusted phenotypes for EAs are represented in green and those for AAs are repre-

sented in orange. Phenotypes are adjusted by age and gender.	
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Figure S3. Manhattan plots for the full SNP set. Plots of the post-QC SNP set of 828,822 SNPs are shown by 

trait, where –log10(p-value) (y-axis) is plotted against chromosome number (x-axis). The p-values for the four 

traits: height (cm), HDL (mmol/L), LDL (mmol/L), and serum urate (mg/dL) were obtained from GWAS con-

ducted on the UK Biobank cohort and previously published GWAS (after excluding the ARIC dataset). The 

Manhattan plots are truncated at a –log10(p-value) of 60 for the sake of presentation. 
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Figure S4. Manhattan plots for a reduced SNP set. Plots of SNPs selected from windows constructed at a –

log10(p-value) cutoff of 1 are shown by trait, where –log10(p-value) (y-axis) is plotted against chromosome number 

(x-axis). The p-values for the four traits: height (cm), HDL (mmol/L), LDL (mmol/L), and serum urate (mg/dL) 

were obtained from GWAS conducted on the UK Biobank cohort and previously published GWAS (after exclud-

ing the ARIC dataset). The Manhattan plots were truncated at a –log10(p-value) of 60 for the sake of presentation. 
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Figure S5. Average estimates of proportion of variance explained by a SNP-set obtained in the second 

simulation scenario, by prior and number of SNPs used. The simulated heritability was 0.5, bars represent the 

average estimates over 200 Monte Carlo replicates and the vertical lines gives +/- standard errors. Results for the 

1st simulation scenario are presented in Figure 1. 
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Figure S6. Average estimates of the correlation of effects in the second simulation scenario by prior and 

number of SNPs used. The simulated heritability was 0.5; bars represent the average estimates over 200 Monte 

Carlo replicates and the vertical lines gives +/- standard errors. Results for the 1st simulation scenario are presented 

in Figure 2. 
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Figure S7. Proportion of variance explained by subsets of SNPs obtained with the Gaussian-interaction 

model, by trait, ethnicity and SNP set. Estimated (median) proportion of variance explained (y-axis) is plotted 

by trait, ethnicity and log10(p-value) cutoff used to choose markers from GWAS consortia (excluding ARIC). 

Numerals above the bars indicate the proportion of variance explained by either ethnic group and the correspond-

ing number of SNPs used for model fitting (in parentheses at the bottom). Vertical lines give estimates of +/- 

posterior standard deviation. 	
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Figure S8. Estimated correlation of effects between African Americans (AAs) and European Americans 

(EAs) obtained with the Gaussian-interaction model, by trait and SNP set. Estimated correlation of effects 

between AAs and EAs (y-axis) is plotted by trait using markers selected from GWAS consortia (excluding ARIC). 

Numerals above the bars indicate the median correlation of effects and the corresponding number of SNPs used 

for model fitting (in parentheses at the bottom). Vertical lines give estimates of +/- posterior standard deviation.  
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Figure S9. Estimated proportion of non-zero effects between EAs and AAs by trait and SNP set for main 

effects and interaction effects obtained using Bayes-C interaction model. Estimated proportion of non-zero 

effects between AAs and EAs (y-axis) is plotted by trait using markers selected from GWAS consortia (excluding 

ARIC) and 6 different –log10(p-value) cutoffs. The first column corresponds to the main effects whereas the second 

and third correspond to interaction effects for EAs and AAs, respectively. In each plot, the vertical lines give 

estimates of +/- posterior standard deviation. 
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Figure S10. Estimated correlation of effects between African Americans (AAs) and European Americans 

(EAs) obtained with the BayesC-interaction model, by trait, ethnicity and randomly chosen SNP set. Esti-

mated (median) proportion of variance explained (y-axis) is plotted by trait, ethnicity and number of randomly 

chosen SNPs (x-axis). Vertical lines represent estimates of +/- posterior standard deviation. Numerals above the 

bars indicate the proportion of variance explained by either ethnic group. Vertical lines give estimates of +/- 

posterior standard deviation. 	
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Figure S11. Estimated correlation of effects between African Americans (AAs) and European Americans 

(EAs) obtained with the BayesC-interaction model, by trait and randomly chosen SNP set. Estimated (me-

dian) correlation of effects between AAs and EAs (y-axis) is plotted by trait at different numbers of randomly 

chosen SNPs (x-axis). Vertical lines represent estimates of +/- posterior standard deviation. In each plot, the 

numerals above the bars indicate the median correlation of effects. 
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Figure S12. Proportion of variance explained by subsets of SNPs obtained with the BayesC-interaction 

model, by trait and SNP set and ethnic-group label randomly permuted within EAs. Estimated (median) 

proportion of variance explained (y-axis) is plotted by trait, permuted EA group label and log10(p-value) cutoff 

used to choose markers from GWAS consortia (excluding ARIC). Numerals above the bars indicate the propor-

tion of variance explained by either ethnic group and the corresponding number of SNPs used for model fitting 

(in parentheses at the bottom). Vertical lines give estimates of +/- posterior standard deviation. 
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Figure S13. Estimated correlation of effects between African Americans (AAs) and European Americans 

(EAs) obtained with the BayesC-interaction model, by trait, SNP set and ethnic-group label randomly per-

muted within EAs. Estimated correlation of effects between AAs and EAs (y-axis) is plotted by trait using mark-

ers selected from GWAS consortia (excluding ARIC). Numerals above the bars indicate the median correlation 

of effects and the corresponding number of SNPs used for model fitting (in parentheses at the bottom). Vertical 

lines give estimates of +/- posterior standard deviation. 	 	
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Tables 
 

Table S1. Numbers of windows (in gray) and the corresponding numbers of SNPs chosen for model fitting 

(in black) for the four traits: Height (cm), HDL (mmol/L), LDL (mmol/L), and serum urate (mg/dL) at 

different -log10(p-value) cutoffs. The p-values for each trait were obtained from previously published GWAS.  

-log10(p-value)	 Height	 HDL	 LDL	 Serum urate	

8	 259	 153	 152	 708	

 1,234	 234	 219	 877	

5	 649	 333	 299	 1202	

 2,316	 510	 426	 1,486	

3	 1983	 1,185	 1,151	 3,249	

 4,777	 1,662	 1,600	 4,049	

2.6	 2795	 1,992	 2,036	 4,957	

 5,910	 2,744	 2,758	 6,184	

2.3	 3806	 3,209	 3,324	 7,267	

 7,120	 4,369	 4,481	 9,185	

2	 5306	 5,510	 5,526	 11,111	

 8,724	 7,442	 7,436	 14,232	
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Table S2.  Estimated proportion of variance explained for EAs and AAs from simulation settings 1 and 2 

using BayesC- and Gaussian-interaction models where the true heritability for both groups are: (1) 0.2 for 

EAs and AAs (2) 0.5 for EAs and 0.2 for AAs (3) 0.2 for EAs and 0.5 for AAs. In parentheses are posterior 

standard deviations across 50 MC simulations.  

    BayesC Gaussian 

    h2.1 (EA) h2.2 (AA) h2.1 (EA) h2.2 (AA) 

Setting nSNPs rho 0.2 0.5 0.2 0.2 0.2 0.5 0.2 0.5 0.2 0.2 0.2 0.5 

  1   100 0.2 0.206 0.509 0.207 0.205 0.209 0.504 0.21 0.514 0.209 0.21 0.214 0.513 

  1 (0.009) (0.01) (0.011) (0.018) (0.02) (0.018) (0.01) (0.009) (0.01) (0.018) (0.02) (0.016) 

  1   500 0.2 0.202 0.502 0.203 0.2 0.203 0.5 0.203 0.503 0.204 0.205 0.208 0.503 

  1 (0.009) (0.009) (0.009) (0.021) (0.026) (0.017) (0.009) (0.009) (0.009) (0.022) (0.026) (0.017) 

  1  1000 0.2 0.203 0.5 0.202 0.2 0.197 0.501 0.204 0.501 0.203 0.206 0.203 0.505 

  1  (0.011) (0.009) (0.012) (0.031) (0.034) (0.023) (0.011) (0.009) (0.012) (0.031) (0.034) (0.023) 

  1  5000 0.2 0.201 0.501 0.201 0.194 0.204 0.49 0.203 0.502 0.203 0.199 0.208 0.499 

  1  (0.015) (0.012) (0.016) (0.044) (0.045) (0.048) (0.016) (0.012) (0.016) (0.049) (0.051) (0.048) 

  1 10000 0.2 0.2 0.5 0.201 0.207 0.224 0.485 0.203 0.501 0.204 0.215 0.224 0.498 

  1 (0.024) (0.018) (0.023) (0.061) (0.064) (0.075) (0.023) (0.017) (0.022) (0.068) (0.064) (0.075) 

  1   100 0.4 0.206 0.504 0.207 0.205 0.21 0.498 0.209 0.511 0.21 0.21 0.214 0.508 

  1 (0.01) (0.01) (0.01) (0.018) (0.021) (0.018) (0.01) (0.01) (0.01) (0.018) (0.021) (0.016) 

  1   500 0.4 0.202 0.502 0.203 0.2 0.206 0.5 0.203 0.503 0.203 0.205 0.21 0.503 

  1 (0.009) (0.009) (0.009) (0.021) (0.024) (0.017) (0.009) (0.009) (0.009) (0.022) (0.024) (0.017) 

  1  1000 0.4 0.204 0.5 0.203 0.2 0.202 0.501 0.204 0.501 0.204 0.206 0.206 0.504 

  1  (0.011) (0.009) (0.011) (0.03) (0.03) (0.022) (0.011) (0.009) (0.011) (0.03) (0.032) (0.022) 

  1  5000 0.4 0.201 0.501 0.202 0.201 0.218 0.489 0.203 0.502 0.204 0.205 0.222 0.497 

  1  (0.015) (0.012) (0.014) (0.043) (0.039) (0.046) (0.016) (0.012) (0.015) (0.045) (0.042) (0.047) 

  1 10000 0.4 0.199 0.499 0.203 0.219 0.243 0.486 0.203 0.501 0.205 0.223 0.243 0.496 

  1 (0.024) (0.018) (0.022) (0.059) (0.053) (0.075) (0.023) (0.018) (0.021) (0.064) (0.058) (0.075) 

  1   100 0.6 0.205 0.491 0.207 0.204 0.214 0.48 0.209 0.498 0.213 0.21 0.22 0.489 

  1 (0.01) (0.012) (0.01) (0.018) (0.021) (0.019) (0.01) (0.012) (0.009) (0.018) (0.02) (0.016) 

  1   500 0.6 0.202 0.499 0.204 0.2 0.218 0.492 0.202 0.5 0.205 0.205 0.222 0.495 

  1 (0.009) (0.009) (0.008) (0.021) (0.019) (0.015) (0.009) (0.009) (0.008) (0.022) (0.019) (0.015) 

  1  1000 0.6 0.203 0.499 0.206 0.203 0.22 0.495 0.204 0.499 0.207 0.207 0.223 0.498 

  1  (0.01) (0.009) (0.01) (0.027) (0.024) (0.021) (0.01) (0.009) (0.01) (0.027) (0.024) (0.021) 

  1  5000 0.6 0.202 0.501 0.209 0.213 0.242 0.486 0.203 0.502 0.21 0.214 0.244 0.494 

  1  (0.015) (0.012) (0.013) (0.034) (0.028) (0.046) (0.015) (0.012) (0.014) (0.041) (0.032) (0.046) 

  1 10000 0.6 0.201 0.499 0.21 0.225 0.263 0.485 0.204 0.501 0.212 0.235 0.272 0.494 

  1 (0.022) (0.018) (0.019) (0.054) (0.046) (0.073) (0.022) (0.018) (0.019) (0.058) (0.049) (0.075) 

  1   100 0.8 0.203 0.463 0.21 0.203 0.227 0.439 0.208 0.47 0.221 0.21 0.238 0.446 

  1 (0.009) (0.012) (0.009) (0.016) (0.02) (0.017) (0.009) (0.011) (0.01) (0.014) (0.02) (0.016) 

  1   500 0.8 0.201 0.491 0.214 0.203 0.25 0.459 0.202 0.491 0.217 0.207 0.254 0.462 
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  1 (0.009) (0.009) (0.008) (0.017) (0.016) (0.015) (0.009) (0.009) (0.009) (0.019) (0.016) (0.015) 

  1  1000 0.8 0.203 0.495 0.22 0.21 0.257 0.469 0.205 0.495 0.222 0.213 0.259 0.473 

  1  (0.01) (0.009) (0.009) (0.022) (0.019) (0.021) (0.01) (0.009) (0.009) (0.022) (0.018) (0.022) 

  1  5000 0.8 0.203 0.5 0.223 0.225 0.278 0.479 0.205 0.501 0.225 0.228 0.281 0.486 

  1  (0.014) (0.012) (0.013) (0.032) (0.023) (0.047) (0.015) (0.012) (0.013) (0.035) (0.024) (0.045) 

  1 10000 0.8 0.203 0.498 0.223 0.24 0.3 0.484 0.206 0.5 0.225 0.247 0.306 0.491 

  1 (0.021) (0.018) (0.018) (0.046) (0.036) (0.07) (0.021) (0.018) (0.018) (0.054) (0.043) (0.075) 

  2   100 0.2 0.201 0.502 0.203 0.203 0.21 0.496 0.208 0.514 0.207 0.209 0.213 0.511 

  2 (0.01) (0.01) (0.011) (0.019) (0.022) (0.019) (0.01) (0.008) (0.01) (0.019) (0.022) (0.018) 

  2   500 0.2 0.201 0.5 0.201 0.201 0.205 0.501 0.202 0.503 0.202 0.205 0.207 0.504 

  2 (0.01) (0.009) (0.01) (0.024) (0.025) (0.018) (0.011) (0.009) (0.011) (0.024) (0.025) (0.019) 

  2  1000 0.2 0.203 0.5 0.202 0.201 0.195 0.503 0.203 0.501 0.202 0.205 0.199 0.505 

  2  (0.009) (0.009) (0.01) (0.03) (0.032) (0.023) (0.009) (0.009) (0.01) (0.031) (0.033) (0.023) 

  2  5000 0.2 0.2 0.502 0.2 0.201 0.205 0.496 0.202 0.503 0.202 0.208 0.21 0.504 

  2  (0.015) (0.011) (0.015) (0.049) (0.04) (0.05) (0.016) (0.012) (0.015) (0.052) (0.041) (0.051) 

  2 10000 0.2 0.198 0.499 0.199 0.216 0.216 0.493 0.201 0.502 0.201 0.22 0.221 0.504 

  2 (0.02) (0.019) (0.019) (0.066) (0.064) (0.086) (0.019) (0.018) (0.019) (0.072) (0.055) (0.087) 

  2   100 0.4 0.201 0.492 0.206 0.204 0.214 0.488 0.208 0.509 0.208 0.208 0.214 0.507 

  2 (0.011) (0.011) (0.011) (0.02) (0.023) (0.02) (0.01) (0.009) (0.01) (0.018) (0.021) (0.017) 

  2   500 0.4 0.2 0.498 0.201 0.202 0.21 0.498 0.202 0.502 0.202 0.205 0.208 0.503 

  2 (0.01) (0.009) (0.01) (0.024) (0.025) (0.017) (0.011) (0.009) (0.011) (0.025) (0.023) (0.018) 

  2  1000 0.4 0.203 0.5 0.203 0.201 0.2 0.501 0.204 0.501 0.203 0.205 0.203 0.504 

  2  (0.009) (0.009) (0.009) (0.029) (0.029) (0.023) (0.009) (0.009) (0.009) (0.031) (0.028) (0.023) 

  2  5000 0.4 0.2 0.503 0.201 0.209 0.216 0.497 0.202 0.503 0.203 0.213 0.219 0.503 

  2  (0.015) (0.011) (0.014) (0.048) (0.034) (0.049) (0.016) (0.012) (0.015) (0.048) (0.036) (0.05) 

  2 10000 0.4 0.199 0.499 0.201 0.225 0.238 0.496 0.201 0.5 0.203 0.228 0.234 0.504 

  2 (0.019) (0.02) (0.019) (0.061) (0.049) (0.087) (0.019) (0.019) (0.019) (0.067) (0.054) (0.087) 

  2   100 0.6 0.202 0.477 0.209 0.205 0.226 0.47 0.208 0.495 0.211 0.208 0.222 0.486 

  2 (0.011) (0.012) (0.012) (0.019) (0.023) (0.021) (0.01) (0.013) (0.01) (0.018) (0.019) (0.021) 

  2   500 0.6 0.2 0.494 0.203 0.204 0.221 0.489 0.201 0.499 0.204 0.206 0.22 0.495 

  2 (0.01) (0.009) (0.01) (0.023) (0.024) (0.016) (0.011) (0.009) (0.01) (0.025) (0.017) (0.017) 

  2  1000 0.6 0.204 0.498 0.207 0.203 0.218 0.494 0.204 0.499 0.207 0.207 0.219 0.498 

  2  (0.009) (0.009) (0.008) (0.027) (0.023) (0.022) (0.009) (0.009) (0.008) (0.028) (0.022) (0.022) 

  2  5000 0.6 0.201 0.502 0.208 0.217 0.242 0.493 0.202 0.502 0.209 0.22 0.241 0.499 

  2  (0.016) (0.011) (0.014) (0.041) (0.026) (0.05) (0.016) (0.011) (0.014) (0.043) (0.029) (0.05) 

  2 10000 0.6 0.2 0.499 0.208 0.234 0.264 0.497 0.202 0.5 0.21 0.24 0.269 0.502 

  2 (0.019) (0.019) (0.017) (0.054) (0.041) (0.084) (0.019) (0.02) (0.017) (0.06) (0.048) (0.087) 
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Table S3.  Estimated correlation of effects between EAs and AAs from simulation settings 1 and 2 using 

BayesC- and Gaussian- interaction models, where the true heritability for both groups are: (1) 0.2 for EAs 

and AAs (2) 0.5 for EAs and 0.2 for AAs (3) 0.2 for EAs and 0.5 for AAs. In parentheses are posterior standard 

deviations across 50 MC simulations.  

    BayesC Gaussian 

    h2.1(EA)_h2.2 (AA) h2.1(EA)_h2.2 (AA) 
Setting nSNPs rho 0.2_0.2 0.2_0.5 0.5_0.2 0.2_0.2 0.2_0.5 0.5_0.2 

1 100 0.2 0.226 0.199 0.222 0.248 0.226 0.24 
1 (0.083) (0.12) (0.092) (0.061) (0.09) (0.068) 
1 500 0.2 0.207 0.212 0.194 0.208 0.209 0.194 
1 (0.075) (0.063) (0.059) (0.069) (0.063) (0.057) 
1 1000 0.2 0.223 0.211 0.201 0.223 0.213 0.2 
1 (0.08) (0.066) (0.062) (0.078) (0.065) (0.06) 
1 5000 0.2 0.26 0.211 0.228 0.267 0.224 0.227 
1 (0.108) (0.089) (0.081) (0.107) (0.086) (0.078) 
1 10000 0.2 0.274 0.212 0.238 0.259 0.217 0.233 
1 (0.123) (0.103) (0.095) (0.117) (0.098) (0.097) 
1 100 0.4 0.417 0.389 0.416 0.416 0.384 0.407 
1 (0.078) (0.103) (0.07) (0.076) (0.091) (0.061) 
1 500 0.4 0.4 0.404 0.394 0.393 0.399 0.392 
1 (0.074) (0.057) (0.053) (0.073) (0.057) (0.054) 
1 1000 0.4 0.418 0.402 0.403 0.411 0.402 0.399 
1 (0.088) (0.058) (0.06) (0.088) (0.058) (0.058) 
1 5000 0.4 0.426 0.382 0.417 0.428 0.388 0.412 
1 (0.129) (0.091) (0.077) (0.124) (0.086) (0.078) 
1 10000 0.4 0.398 0.355 0.407 0.393 0.36 0.401 
1 (0.153) (0.115) (0.098) (0.138) (0.108) (0.102) 
1 100 0.6 0.61 0.577 0.605 0.607 0.543 0.557 
1 (0.064) (0.071) (0.049) (0.064) (0.062) (0.037) 
1 500 0.6 0.599 0.573 0.582 0.59 0.563 0.568 
1 (0.062) (0.041) (0.035) (0.061) (0.04) (0.03) 
1 1000 0.6 0.614 0.564 0.584 0.604 0.56 0.572 
1 (0.08) (0.04) (0.04) (0.078) (0.04) (0.037) 
1 5000 0.6 0.585 0.535 0.566 0.595 0.537 0.56 
1 (0.102) (0.068) (0.055) (0.11) (0.072) (0.052) 
1 10000 0.6 0.547 0.507 0.545 0.534 0.498 0.541 
1 (0.132) (0.1) (0.078) (0.128) (0.093) (0.083) 
1 100 0.8 0.803 0.749 0.78 0.791 0.674 0.682 
1 (0.041) (0.039) (0.028) (0.037) (0.043) (0.028) 
1 500 0.8 0.789 0.704 0.724 0.778 0.683 0.68 
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1 (0.046) (0.03) (0.02) (0.046) (0.032) (0.021) 
1 1000 0.8 0.79 0.69 0.705 0.78 0.68 0.68 
1 (0.057) (0.03) (0.028) (0.057) (0.032) (0.03) 
1 5000 0.8 0.723 0.659 0.657 0.722 0.654 0.647 
1 (0.084) (0.059) (0.046) (0.08) (0.058) (0.043) 
1 10000 0.8 0.664 0.627 0.631 0.653 0.62 0.63 
1 (0.107) (0.084) (0.063) (0.105) (0.074) (0.072) 
2 100 0.2 0.222 0.202 0.218 0.248 0.236 0.24 
2 (0.095) (0.101) (0.098) (0.078) (0.082) (0.074) 
2 500 0.2 0.206 0.18 0.189 0.208 0.203 0.192 
2 (0.07) (0.052) (0.053) (0.069) (0.053) (0.053) 
2 1000 0.2 0.231 0.192 0.2 0.229 0.211 0.203 
2 (0.082) (0.057) (0.057) (0.083) (0.066) (0.058) 
2 5000 0.2 0.272 0.211 0.23 0.267 0.215 0.227 
2 (0.112) (0.081) (0.081) (0.098) (0.076) (0.076) 
2 10000 0.2 0.259 0.217 0.24 0.259 0.212 0.23 
2 (0.118) (0.1) (0.109) (0.126) (0.09) (0.108) 
2 100 0.4 0.41 0.39 0.414 0.416 0.398 0.411 
2 (0.094) (0.09) (0.088) (0.091) (0.084) (0.079) 
2 500 0.4 0.398 0.362 0.386 0.398 0.39 0.391 
2 (0.071) (0.052) (0.049) (0.071) (0.052) (0.051) 
2 1000 0.4 0.424 0.379 0.399 0.419 0.398 0.403 
2 (0.084) (0.053) (0.053) (0.087) (0.055) (0.055) 
2 5000 0.4 0.435 0.38 0.417 0.43 0.384 0.413 
2 (0.114) (0.087) (0.073) (0.106) (0.085) (0.072) 
2 10000 0.4 0.392 0.366 0.398 0.388 0.34 0.395 
2 (0.137) (0.095) (0.114) (0.149) (0.109) (0.118) 
2 100 0.6 0.603 0.579 0.602 0.609 0.556 0.56 
2 (0.09) (0.077) (0.077) (0.087) (0.06) (0.057) 
2 500 0.6 0.597 0.544 0.576 0.596 0.553 0.564 
2 (0.067) (0.045) (0.038) (0.069) (0.039) (0.031) 
2 1000 0.6 0.617 0.548 0.581 0.61 0.556 0.575 
2 (0.074) (0.041) (0.037) (0.075) (0.04) (0.031) 
2 5000 0.6 0.602 0.529 0.565 0.595 0.54 0.557 
2 (0.104) (0.071) (0.049) (0.091) (0.062) (0.05) 
2 10000 0.6 0.537 0.505 0.533 0.525 0.505 0.534 
2 (0.138) (0.088) (0.097) (0.142) (0.088) (0.1) 
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Appendices 

APPENDIX A 

Variance component estimation using a Metropolis Hastings-within-Gibbs algorithm 
 

The package BGLR can be used to implement the model of Equation 1 using a Gibbs sampler. By default, 

BGLR assigns scaled-inverse chi-square priors to variance components. When individuals are distantly related, 

as they are in our case, the scaled-inverse Chi-square prior can have influences on inferences. To overcome this 

problem, we used as prior a modified Beta distribution, which allows specifying a relative flat prior for variances.  

Let 𝜎.# be a variance parameter (any of the variances entering the model) and  K denote an upper-bound 

on 𝜎.# so that 𝜎.# ∈ [0, 𝐾]; therefore, 𝜎~.# =
,.-

.
∈ [0,1]. We then assigned 𝜎~.# a Beta prior, that is 

𝑝1𝜎
~
.
#2 ∝ 1𝜎

~
.
#2
(5678)11 − 𝜎

~
.
#2
(5-78)110 < 𝜎

~
.
# < 12  

(A1)  

where 𝛼8 and 𝛼# are prior “shape” hyper-parameters and 110 < 𝜎
~
.
# < 12 is an indicator variable that specify the sup-

port of the distribution. Parameter values 𝛼8 = 𝛼# = 1 give a uniform distribution on the 0-1 interval for 𝜎~.#; more 

informative distributions can be obtained by increasing the values of these hyper-parameters. In our application 

we used 𝛼8 = 𝛼# = 1.01 which gives a very weakly informative prior.   

According to the Jacobian theorem, the prior distribution of 𝜎.# is 

𝑝(𝜎.#) = 𝑝 =𝜎
~
.
#(𝜎.#)> ?

𝑑𝜎
~
.
#(𝜎.#)
𝑑𝜎.#

? ∝ A
𝜎.#

𝐾 B
(5678)

A1 −
𝜎.#

𝐾 B
(5-78)

1(0 < 𝜎.# < 𝐾) 

(A2)  

When this prior is used, the fully conditional density of the variance parameter does not have a closed 

form. Therefore, we sampled variance parameters using a Metropolis Hastings algorithm. The rest of the un-

knowns, effects and intercepts were subsequently sampled from their fully conditional densities as implemented 

in BGLR. 
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Metropolis-Hastings Step. This was used to sample the variances of effects as well as the error variances. Assum-

ing a BayesC prior for effects (𝒃. with . = 0,1,2 for main effects and interactions, respectively), the fully-conditional 

density of the variance parameters when the Beta prior is used can be shown to be 

p(
𝜎E.#

𝐾 |𝒃. , 𝝅. )∝𝛑.σE.#
=7J#>𝑒

7A𝒃.
L𝒃.

#,M.
- B A

𝜎E.#

𝐾 B
(5678)

A1 −
𝜎E.#

𝐾 B
(5-78)

1(0 < 𝜎E.# < 𝐾) 

(A3)  

This distribution does not have a closed form; therefore, we draw samples for variance parameters using 

a Metropolis Hastings step (Sorensen and Gianola 2007; Gelman et al. 2014) using as target distribution Equation 

A3 and as proposal distribution             

𝑄(𝜎E.#) = 𝜒7# =𝑝, 𝒃.
L𝒃.
J
>                                                                              (A4) 

Assuming a Gaussian likelihood, the fully conditional distribution of the error variances can be shown to 

be 

p =,.
-

.
P𝜺. >∝𝜎.#

=7R.- >𝑒7S
𝜺.L𝜺.
-T.-

U =,.
-

.
>
(5678)

=1 − ,.-

.
>
(5-78)

1(0 < 𝜎.# < 𝐾)            

               (A5)  

where . =1,2 define the error variances for groups one and two, respectively.  

The above expression gives the target distribution for the error variances. The proposal distribution for 

the error variances was: 

𝑄(𝜎.#) = 𝜒7# =𝑛.,
𝜺.L𝜺.
W.
>        (A6) 

References: 

Gelman A., J. B. Carlin, D. B. Rubin, H. S. Stern, 2014 Bayesian data analysis. Chapman and Hall/CRC, Boca 

Raton, FL. 

Sorensen D., D. Gianola, 2007 Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Springer 

Science & Business Media, Berlin. 
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APPENDIX B 

Mixture model representation for simulations to detect bias in estimates of average correlation of effects 
 

In this note we show the mathematical representation of the mixture of normal distributions that was used 

to draw marker effects in the simulations. The phenotypes were simulated from the following model: 

𝑦8Y = ∑𝑋8Y\𝛽8\ + 𝜀8Y;𝑦#Y = ∑𝑋#Y\𝛽#\ + 𝜀#Y 

where 𝑦`Y(𝑘 = 1,2) is the simulated phenotype for the 𝑖de individual in the 𝑘de group, 𝛽`\ is the effect of the 𝑗de  

marker (𝑗 = 1,2,… 𝑝) in the 𝑘de group that is normally distributed with means 0 and variances 𝜎h`#  and 𝜀`Y is the 

error term for the 𝑘de group that is normally distributed with means 0 and variances 𝜎`#. 

The mixture models used in the simulations can be represented as: 

i
𝛽8\
𝛽#\

j 𝑖𝑖𝑑~ 𝜋8𝑀𝑉𝑁A0,
𝜎h88# 𝜎h8#
𝜎h8# 𝜎h### B + 𝜋#𝑁1𝛽8\o0, 𝜎h8## 2𝐼1𝛽#\ = 02 + 𝜋q𝑁1𝛽#\o0, 𝜎h#8# 2𝐼1𝛽8\ = 02 + (1 − 𝜋8 −

𝜋# − 𝜋q)𝐼1𝛽8\ = 02𝐼(𝛽#\ = 0)  

               (A7) 

where 𝜋8, 𝜋#, 𝜋qare the proportions of loci that have effects on both traits (𝜋8), on trait two only (𝜋#) and on 

trait one only (𝜋q). Under this assumption the variance of effects for group 1 and 2 are given by 𝜎h8# = 𝜋8𝜎h88# +

𝜋#𝜎h8##  and 𝜎h## = 𝜋8𝜎h### + 𝜋q𝜎h#8#  and the covariance of effects is 𝜋8𝜎h8#. For the sake of simplicity, we as-

sume all the variance parameters in Equation A7 to be the same, say 𝜎h# . Thus 𝑣𝑎𝑟(𝛽8\) = (𝜋8 + 𝜋#)𝜎h#  , 

𝑣𝑎𝑟(𝛽#\) = (𝜋8 + 𝜋q)𝜎h#  and 𝐶𝑜𝑣1𝛽8\, 𝛽#\2 = 𝜋8𝜎h6- 

 Upon centering and scaling the markers so that the average diagonal values of 𝑿8𝑿8′ and 𝑿#𝑿#y  are equal 

to one, the proportion of variance explained parameters become: 

𝑣z8# =
({6|{-),}

-

({6|{-),}
-|,~6-

 and 𝑣z## =
({6|{�),}

-

({6|{�),}
-|,~--

      (A8) 

 Likewise, the correlation of effects is given by: 

  𝐶𝑜𝑟1𝛽8\, 𝛽#\2 = 𝜌 = {6,}6-

�({6|{-),}
-×({6|{�),}

-
       (A9) 
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In both simulation settings we assumed 𝜎�8# = 1 − 𝑣z8# , 𝜎�## = 1 − 𝑣z##  and 𝑣z8# = 𝑣z## = 0.5.  

In the first simulation setting, we assume 𝜋8 = 1, 𝜋# = 0, 𝜋q = 0. This reduces the proportion of vari-

ance explained and correlation parameters to: 

𝑣z8# =
,}
-

,}
-|,~6-

𝑣z## =
,}
-

,}
-|,~--

and𝜌 = ,}6-
,}
-         (A10) 

In the second simulation setting, we assume 𝜋8 = 0.5, 𝜋# = 0.2, 𝜋q = 0.2. This reduces the proportion 

of variance explained and correlation parameters to: 

𝑣z8# =
�.�,}

-

�.�,}
-|,~6-

𝑣z## =
�.�,}

-

�.�,}
-|,~--

and𝜌 = �
�
,}6-
,}
-       (A11) 

In both simulations we conducted a total of 200 Monte Carlo (MC) replicates and fit the interaction model 

(Equation 1) for each MC replicate. Bias and variance of estimates were estimated by comparing estimates (pos-

terior means) with the true population parameters. 
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APPENDIX C 

Bias in effect correlation using estimated effects vs. variance components  
 

In this note, we show that the simple correlation of estimated effects can be a highly biased (towards zero) 

estimate of the true correlation of effects.  Let 𝛽8\ and 𝛽#\  be the effects of marker 𝑗 in groups 1 and 2. The true 

correlation of effects between the groups is given by 𝐶𝑜𝑟1𝛽8\, 𝛽#\2 =
���1h6�,h-�2

����1h6�2���1h-�2
. Likewise, let 𝛽

^
8\ and 𝛽

^
#\  

denote the estimated effects from some unbiased estimator (e.g., Ordinary Least Squares or Maximum Likelihood 

with sufficiently large sample size) such that 𝛽
^
8\ = 𝛽8\ + 𝛿8\ and 𝛽

^
#\ = 𝛽#\ + 𝛿#\ where 𝛿8\ and 𝛿#\ represent 

estimation errors. Since the groups are disjoint, 𝑐𝑜𝑟1𝛿8\, 𝛿#\2 = 0. Now, the correlation of estimated effects be-

tween the groups is given by 𝐶𝑜𝑟 S𝛽
^
8\, 𝛽

^
#\U =

���1h6�,h-�2

�����1h6�2|���1�6�2�×����1h-�2|���1�-�2�
. Clearly, 

|𝐶𝑜𝑟 S𝛽
^
8\, 𝛽

^
#\U | ≤ |𝐶𝑜𝑟1𝛽8\, 𝛽#\2| since 𝑉𝑎𝑟1𝛿`\2 ≥ 0, 𝑘 = 1,2. This shows that the simple correlation of esti-

mated effects is a biased estimate of the true correlation of effects.	


