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Fig. 1. R2 values decrease as we filter out bars of increasing
lengths in terms of percentiles of the overall distribution of bar
lengths across all simulated datasets.

Filtering β1. Some authors have suggested that short-lived bars
in a persistence diagram may arise due to topological noise (1).
It is unclear whether a universal threshold exists to filter out
potentially noisy bars, however. In the case of our own study,
we tested whether filtering out short-lived bars improves the
relationship between existing topological models of recombina-
tion and β1, specifically using Camara et al’s ρph for goodness
of fit. We find that the filtration of short-lived bars only lowers
the R2 values for this model applied to our simulated datasets,
thus we opt not to use any filtration of these bars in practical
applications (Figure 1).

Missing Data. As large quantities of missing data are frequently
encountered in empirical datasets, we investigated the perfor-
mance of both ψ and β1 under various scenarios involving
different amounts of missing data using the same datasets we
simulated for our main coalescent investigation. Specifically,
we took these existing datasets, duplicated them, and then con-
verted randomly chosen sites or blocks of sites to N, in order
to simulate missing data. For each dataset, a total of 10% of
each sequence (and therefore, 10% of the total alignment) was
converted to Ns. Since in all cases, 10% missing data was in-
troduced into the alignments, we note that our specific interest
here is in how robust each topological feature is to either a)
a random distribution of missing sites, as would be common

Fig. 2. Expectations of ψ and β1 given ρ when 10% of data
is missing in large tandem blocks. In the case of β1, the R2

value has dropped from 0.9 in the case of no missing data to
0.04, suggesting that this feature is highly sensitive to minimal
missing data. In comparison, ψ maintains an R2 of 0.76, sug-
gesting greater robustness to loss of information in sequence
data.

with sequencing error, or b) tandemly linked missing sites, as
common in indels. We find that, overall, ψ is much more robust
to missing data than is β1 when predicting ρ. Specifically, we
looked at the expectation of β1 and ψ given ρ as in Camara
et. al’s model, to see how well the model fits each topological
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Fig. 3. β1 versus ρ̄ rate from randomly mixed populations of
different recombination rates.

feature under each missing data scenario 2. We did this in order
to evaluate the strength of the relationship without a prior ex-
pectation for the expectation of ψ, and found a greater fit to the
Camara model describing the expectation of ψ in place of β1
given ρ in these circumstances than their original expectation
of β1 given ρ.

When we invert the graph to see how ψ or β1 behave as
predictors of ρ, we lose the fit to the Camara model. However,
we observe similar differences in the variances of the two
predictors, specifically noting that the variance in β1 remains
higher and so poses greater uncertainty than does ψ.

Mixing Populations. We explored the robustness of ψ and β1
under mixed populations of varying recombination rate. In par-
ticular, we randomly sampled N individuals from a population
of known recombination rate ρ1, along with M individuals
from a population of known recombination rate ρ2. We kept
N + M = 160 constant while varying N , M , ρ1, and ρ2.
These experiments were all done on the simulated data, and
we fixed the population mutation rate to θ = 25.

For each randomly concatenated population we computed
the weighted mean recombination rate ρ̄ = N

160 ∗ ρ1 + M
160 ∗

ρ2. The results of comparing our main topological summary
statistics ψ and β1 to the weighted mean recombination rate
are presented in figures 3-4. We see that under randomly mixed
populations ψ maintains a tight exponential relationship with
ρ̄. In comparison, in this setting the relationship between β1
and ρ̄ becomes noisier. The nice behavior of ψ is expected as
mixing two distant populations only adds one non-informative
coalescence event between the populations, and as a result
has little effect on ψ other than averaging the recombination
parameters of the samples.

Fig. 4. ψ versus ρ̄ from randomly mixed populations of differ-
ent recombination rates.

LASSO Weights. In order to gain intuition for which barcode
statistics would be the best predictors for recombination we
first ran a LASSO regression analysis using 15 barcode statis-
tics as input and analyzed the resulting weight vector. We used
the LASSO weight vectors as a proxy for the predictive power
of each barcode statistic.

The barcode statistics we studied were the Betti number
(βi), mean barcode length (ψi), medium barcode length (mi),
maximum barcode length (Mi), and the thresholded Betti num-
ber (βT

i ) in dimensions 0, 1, and 2. Here, the thresholded Betti
number refers to the number of bars whose bar length is greater
than a specified cutoff, where the cutoff is set as a percentage
of maximum bar length Mi. In these experiments we tested
thresholds corresponding to 10 − 60% of the maximum bar
length.

We ran LASSO on the simulated data with fixed sample
size using Scikit-learn (2) in Python 2.7. For each threshold,
we ran LASSO 20 times on randomly selected training data.
Initially we used all 15 barcode summary statistics as input and
then analyzed the LASSO weight vectors for all 20 runs across
the varying thresholds. These weight vectors are visualized in
a heat map in Figure 5.

Observe, consistently ψ0 (or ψ), m0, and βT
0 are among

most heavily weighted inputs, with ψ0 having the most influ-
ence overall. This motivated our rigorous exploration of ψ as
an estimator for recombination rate. Also note that β0 has zero
weight since β0 is precisely the sample size, which is constant
in this experiment. Consequently, βT

0 only varies as M0 varies.
In contrast to the dimension-0 statistics, the dimension-1

barcode statistics have negligible weights across all model runs
and all thresholds. Moreover, almost all of the dimension-2
barcode statistics have low weights across all model runs, with
the exception of M2 whose weight increases as the threshold
for βT

i increases.
In an attempt to extract the best dimension-1 topological

predictor for recombination, we re-ran the 20 runs of LASSO
for varying thresholds using only the dimension-1 topological
summary statistics as input. The results of this refined analysis
are presented in Figure 6. Here we see that out of all the dimen-
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Fig. 5. Absolute value of LASSO weight vectors across 20
model runs on randomly selected 15-dimensional training data
for varying thresholds for βT

i .

sion 1 topological statistics, β1 is the most heavily weighted
input feature when the threshold is set to ≤ 30% of Mi. For
increased threshold values the weight of β1 decreases signifi-
cantly and ψ1 is the most heavily weighted input features for
the dimension 1 barcode statistics, although its weights vary
greatly across different model runs. This is consistent with
the results presented in Filtering β1, which suggest that filter-
ing out short-lived bars hinders the predictive power of β1 for
recombination estimates.

The results of these LASSO analyses provided us with the
motivation to focus on understanding the significance of lower
dimensional topological statistics as predictors for recombina-
tion. Moreover, we used the results of the dimension-1 LASSO
analysis to decide which higher dimensional statistics to use in
tandem with ψ. We chose to exclude dimension-2 statistics as
predictors due to their overall low weight vectors and the lack
of biological significance.

Noise Experiments. We further tested whether topological noise
may contribute to relationships we observed between β1,
ψ, and ρ by adding noise or randomizing sequences within
datasets to obtain topological structures unrelated to recom-
bination. In one experiment, we simulated realistic cases of

Fig. 6. Absolute value of LASSO weight vectors across 20
model runs on randomly selected dimension 1 training data for
varying thresholds for βT

i .

Fig. 7. R2 values decrease as we include increasing sequence
errors, but remains greater than 0.75 over all realistic and
slightly more extreme possible error rates.

sequencing error in each dataset by adding a random base over
a range of error rates from 0 to 140 / 1000 bases (see Figure
7). As this error rate increases, we find a reduction in the fit
of topological models in β1 to the data, but the decrease in fit
is slow over all realistically expected error rates (around 10%
sequencing error, we see no reduction in R2 for ρph).

Other Relationships. We tested for relationships between our
topological features ψ and β1 and Watterson’s θ, as well as for
possible correlations between the topological features them-
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Fig. 8. ψ and β1 are uncorrelated with variance in θ.

selves.
We computed each feature from the set of 3600 simulated

sequence alignments with varying values of ρ and θ, and pro-
duced similar correlation plots showing relationships between
each pair of variables. We find that neither β1 nor ψ is corre-
lated with Watterson’s θ, thus we can confidently assert that
this is not a confounding factor in our analyses (Figure 8).

In contrast to this, we do find that β1 and ψ are correlated
quite tightly in our work (Figure 9). While this correlation is
expected since both statistics should be elevated in the presence
of recombination events, we have noted in other experiments
that ψ nevertheless adds unique information.
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Fig. 9. ψ and β1 are tightly correlated over variable values of
ρ.

4 |


