
Supplementary Tables
Table 1S; Strains used for genomic analysis (strains are congenic with W303)
Strain Analysis Genotype
DY150 RNA, MNase MATa ade2 can1 his3 leu2 trp1 ura3
DY12554 RNA, MNase MATa ade2 can1 his3 leu2 lys2 trp1 ura3 pob3(Q308K)::KanMX
DY16281 RNA, MNase MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56Q) HHT2(K56Q)
DY16302 RNA MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56R) HHT2(K56R)
DY16592 RNA, MNase MATa ade2 can1 his3 leu2 lys2 trp1 ura3 HHT1(K56Q) HHT2(K56Q) 

pob3(Q308K)::KanMX
8159-4-1 RNA MATa ade2 can1 his3 leu2 trp1 ura3 spt16(G132D)
8315-8-1 RNA MATa ade2 can1 his3 leu2 trp1 ura3 spt16-11

Table 2S; Strains used for phenotype analysis in Figure 2 (strains are congenic with W303)
Strain Genotype
Fig 2A, top
DY150 MATa ade2 can1 his3 leu2 trp1 ura3
DY16281 MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56Q) HHT2(K56Q)
DY16302 MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56R) HHT2(K56R)
DY16313 MATa ade2 can1 his3 leu2 lys2 trp1 ura3 HHT1(K56A) HHT2(K56A)
DY12554 MATa ade2 can1 his3 leu2 lys2 trp1 ura3 pob3(Q308K):KanMX
DY16592 MATa ade2 can1 his3 leu2 lys2 trp1 ura3 HHT1(K56Q) HHT2(K56Q) 

pob3(Q308K)::KanMX
DY16689 MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56R) HHT2(K56R) pob3(Q308K):KanMX
DY17970 MATa ade2 can1 his3 leu2 met15 trp1 ura3 HHT1(K56A) HHT2(K56A) 

pob3(Q308K):KanMX
Fig 2A, bottom
DY150 MATa ade2 can1 his3 leu2 trp1 ura3
DY16281 MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56Q) HHT2(K56Q)
DY16302 MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56R) HHT2(K56R)
DY7815 MATa ade2 can1 his3 leu2 lys2 trp1 ura3 spt16-11
DY17550 MATa ade2 can1 his3 leu2 lys2 trp1 ura3 HHT1(K56Q) HHT2(K56Q) spt16-11
DY17552 MATa ade2 can1 his3 leu2 met15 ura3 HHT1(K56R) HHT2(K56R) spt16-11
Fig 2B
DY150 MATa ade2 can1 his3 leu2 trp1 ura3
DY16264 MATa ade2 can1 his3 leu2 trp1 ura3 hst3∆:HIS3 hst4∆:KANMX
DY19125 MATa ade2 can1 his3 leu2 lys2 met15 trp1 ura3 pob3(Q308K):LEU2
DY18250 MATa ade2 can1 his3 leu2 trp1 ura3 pob3(Q308K):LEU2 hst3∆:HIS3 hst4∆:KanMX
DY18243 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂
DY18246 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ hst3∆:HIS3 hst4∆:KanMX
10034-6-2 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ spt16-11
10034-10-3 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ hst3∆:HIS3 hst4∆:KanMX spt16-11
Fig 2C
DY18243 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂
10035-3-3 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ rtt109∆(::KanMX)
DY18247 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ pob3(Q308K):LEU2



DY19131 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ pob3(Q308K):LEU2 rtt109:KanMX
10034-6-2 MATa ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ spt16-11
10035-6-4 MATα ade2 can1 his3 leu2 trp1 ura3 lys2-128∂ rtt109-∆(::KanMX) spt16-11

Table 3S; Strains used in Supplemental Figure 1SC, H3 western blot (congenic with W303)
Strain Genotype
DY5699 MATa ade2 can1 his3 leu2 lys2 met15 trp1 ura3
DY12949 MATa ade2 can1 his3 leu2 lys2 met15 trp1 ura3 asf1::KanMX
DY13030 MATa ade2 can1 his3 leu2 lys2 trp1 ura3 rtt109::KanMX
DY16281 MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56Q) HHT2(K56Q)
DY16302 MATa ade2 can1 his3 leu2 trp1 ura3 HHT1(K56R) HHT2(K56R)
DY16313 MATa ade2 can1 his3 leu2 lys2 trp1 ura3 HHT1(K56A) HHT2(K56A)

Table 4S; primers used for detecting HHT1 or HHT2 mutations.
Name Target Sequence
F2899 HHT1 5’-GGTACTGTTGCTTTGAGAGAAATC
F3093 HHT1 5’-CTTGCAAGGCACCGATG
F2901 HHT2 5’-GTACTGTTGCCTTGAGAGAAATT
F2902 HHT2 5’-GATTCTTGCAAAGCACCGATA



Table 5S; Comparison of Spearman and Pearson correlation coefficients for scatter plots.
Spearman and Pearson correlation coefficients were calculated in GraphPad Prism for scatter plots based 
on the genomic data presented here. Colors indicate the strength of the correlations, with negative values in 
shades of red and positive values in shades of green.



Supplementary Figures

 
Figure 2S. Mutations of histone H3 did not strongly affect the level of H3 or its incorporation into chromatin.
 (A) Strains (see Table 3S for full genotypes) were grown to log phase and proteins were extracted by 
the TCA method (Mccullough et al. 2015). A western blot was prepared using 5 µg of total protein from each 
strain, then the blot was probed with antibodies against histone H3 or Pgk1 as an additional loading control. 
Molecular weight standards with approximate sizes in kDa are shown (M, Li-Cor Odyssey One-Color). (B) 
Strains with the genotypes indicated (Table 1S) were tested for soluble and total histone H3 as described 
previously (Mccullough et al. 2013). Briefly, cells were spherophlasted, lysed by hypotonic stress, then 
centrifuged to separate chromatin from soluble histones. The level of H3 in each fraction was then determined 
by quantitative western blotting using titrations of each fraction and a WT strain lysate to establish linearity 
of detection. The fraction of soluble H3-K56Q was 1.7-fold higher than WT (P = 3.4%, paired t test) but the 
increase was less than 1% of the total H3 and was therefore considered negligible. 

Figure 1S. Mutations of histone H3 did not strongly affect the affinity of FACT for nucleosomes.
 (A) The affinities of either WT or mutant versions of FACT for nucleosomes constructed with either 
WT H3 or H3-K56Q were determined by electrophoretic mobility shift assays as described previously (Xin et 
al. 2009). KDs were determined using GraphPad Prism to fit the binding data to a single-site binding model. 
Results from one experiment are shown for samples evaluated in parallel on the same gel with quantitation 
based on the H2B signal (Nucleosomes were labeled with Cy5 on the DNA and Oregon Green on H2B). (B) 
Multiple repeats of the assay in (A) were performed and KD values obtained by quantitation of the DNA signal 
were normalized to the value for WT nucleosomes with WT FACT run in parallel on each gel to reduce the 
effects of variation among gels run on different days. The affinity of FACT with the Pob3-Q308K mutation for 
nucleosomes with the H3-K56Q mutation was slightly reduced (72% of WT, P = 2.2% in a paired t test) but 
none of the other combinations produced significant changes.

Fig 1S

Fig 2S



Figure 3SA. Principal-component analysis of rlog2(mRNA, 
sense) dataset.
 Principal component analysis was performed in R 
on the independent replicates for the RNA-seq samples. 
The first two components, accounting for ~64% of the 
variance, are plotted for each strain.

Figure 3SB-F. Comparisons of the change in transcript levels for all mutants to gene characteristics. 
 The log2FC values for the RNA-seq data for each set of mutants was determined as in Fig 3 in the main 
text and plotted against different measurements of transcription frequency or the length of each transcription 
unit. (B) Transcription frequency is estimated as RNA Pol II occupancy measured by ChIP-seq (published by 
Pelechano et al. 2010; the pob3-Q308K data shown here are the same as in Fig 3B). Spearman correlation 
coefficients and linear regression slopes are given for each scatter plot, and summarized in Table 5S. RNA 
Pol II occupancy, NET-seq, and comparative dynamic transcriptome analysis (cDTA) are expected to provide 
a more accurate picture of ongoing transcription in WT yeast cells, but our log2FC data are derived from the 
steady-state level of transcripts and we noted that while many correlations were weak or moderate, they were 
consistently highest with our internal rlog2 (mRNA, sense strand) data and derivatives of it.

Fig 3SB

Fig 3SA



Fig 3SC

Fig 3SD

Fig 3SC. The log2FC values for the RNA-seq data plotted against our rlog2 data for the total mRNA (sense 
strand) from the WT strains (the pob3-Q308K data shown here are the same as in Fig 3C).

Fig 3SD. The log2FC values for the RNA-seq data plotted against the annotated transcription unit lengths ((the 
pob3-Q308K data shown here are the same as in Fig 3D).



Fig 3SE

Fig 3SF

Figure 3SE. The log2FC values for the RNA-seq data plotted against NET-seq results (Marquardt et al. 2014).

Figure 3SF. The log2FC values for the RNA-seq data plotted against metabolic labeling or comparative 
dynamic transcriptome analysis (cDTA) synthesis rates (Sun et al. 2013).



Figure 3SG. Comparison of the effects of chronic FACT or H3-K56 status mutations with acute withdrawal of 
FACT using published data (Feng et al. 2016).
 To ask how chronic exposure to non-lethal FACT or H3 mutations with specific functional defects 
compares with acute loss of FACT, we reanalyzed the data from Feng et al. 2016. These authors used a 
temperature sensitive allele, spt16-G132D, that causes rapid degradation of FACT to perform RNA-seq 
under permissive (25°) and restrictive (37°) conditions. We preferred this dataset to other similar published 
reports because it used a short (45 minute) exposure to the restrictive temperature to limit complications that 
could arise as cells experience lethal defects. As the dataset contained single samples for each condition, 
we reanalyzed it using the TPM normalization method (see the Supplemental Methods below). (a, b) The 
spt16-G132D mutant grown at 25° (T0) gave RNA-seq results that correlated very strongly with the WT strain 
grown in parallel (r = 0.99, m = 1.0), and our WT and spt16-G132D (grown at 30°) data also correlated well 
with the Feng et al. 2016 WT results (r = 0.81, m = 0.85 for both). Incubating the WT strain to 37° for 45’ (T45) 
causes some changes in transcript levels globally, but spt16-G132D displays a much stronger effect, with 
notable “flattening” of the correlation (panel c, r = 0.56, m = 0.38), indicating a general increase in infrequently 
transcribed genes and a decrease in more abundant transcripts. Confirming this, direct comparison of the 
log2FC values (spt16-G132D T45/T0) vs RNA Pol II occupancy (panel d) or total normalized RNA (panel e), 
produced much stronger correlations than our chronic FACT mutation data. Notably, the same was not true of 
the comparison with transcription unit length (panel f). These outcomes suggest that acute withdrawal of FACT 
makes rapid cycling of initiation difficult, but does not directly affect elongation efficiency as strongly.

Fig 3SG



Figure 4SA. Acute withdrawal of FACT affects transcript levels from individual genes differently than chronic 
mutations.
 Whereas each of the mutant strains tested here caused similar effects at the same genes (Fig 4), 
a similar analysis comparing individual viable mutants to the effects of acute loss of FACT as measured 
by incubating an spt16-G132D strain for 45’ at 37° (Feng et al. 2016) produced weaker correlations. The 
combination of H3-K56Q with pob3-Q308K gave a moderate correlation (rSp = 0.52, m = 0.25) suggesting that 
multiple hits at different points in the pathway promoted by the FACT:H3-K56 functional interaction started to 
have features of acute FACT withdrawal.

Fig 4SA

Fig 4SB

Figure 4SB-4SC. Removing the “slow growth signature” had small, variable effects on the RNA-seq datasets.
 The Holstege lab surveyed over 1000 deletion mutants by RNA-seq (o’duibhir et al. 2014) and noted 
that many slow-growing strains had a common set of changes in transcript abundance that they associated 
with perturbed distribution of cells in populations among different phases of the cell cycle. We used the script 



Fig 4SC

Fig 5SA. Principal Component analysis of MNase-seq 
sample replicates.
 Principal component analysis was performed 
in R on the independent replicates for the MNase-seq 
samples. The first two components, accounting for 
~83% of the variance, are plotted for each strain.

Fig 5SA

described by o’duibhir et al. 2014 to subtract this signature from our data, with variable but small effects (Fig 
4SB). The smallest effect was on spt16-G132D, as expected as this strain exhibits essentially normal growth 
at 30°. The largest effect was observed with the H3-K56R data, which was surprising given the small effect 
on growth at 30° observed with this strain (Fig 2A). Notably, removing the signature did not strongly affect the 
correlation between the log2FC outcomes and transcript level, transcription frequency, or transcription unit 
length (not shown) or the pairwise correlations between mutants (Fig 4SC). 



Fig 5SB. Analysis of nucleosome shifts in mutant strains.
 Nucleosome midpoints were called and aligned as in Fig 5A, then the change in each nucleosome 
position from the -1 to +4 positions relative to the TSS were estimated for each gene (see the Supplemental 
Materials and Methods for details) and displayed as a box and whisker plot. The box shows the 25th to 75th 
percentile with the median indicated by a horizontal line and the mean indicated by a “+” symbol, the whiskers 
show the 5th - 95th percentiles, and outliers are shown as symbols. The inset shows a plot of the mean values 
for each nucleosome for each mutant, showing a linear relationship, indicating that the changes are minimal at 
the -1 nucleosome, then the 3’ shift is cumulative with each nucleosome downstream of the TSS. 

Fig 5SB



Fig 5SC, 5SD. The relationship between the shift in nucleosome position and the frequency of transcription.
 Genes were binned by quintiles from the lowest (1) to the highest (5) rlog2(mRNA, sense strand) values 
for the WT strain from this study, and box-whisker plots were generated as described above for the shift at 
the +4 nucleosome for each quintile for each mutant. This analysis shows a significantly higher shift in the +4 
nucleosome for abundantly transcribed genes, suggesting a correlation between the nucleosome positioning 
shift and the frequency of transcription. This is partially supported by scatter plots comparing the shift in 
position of the +4 nucleosome with transcript abundance for each gene displayed by the order of abundance 
(low to high), which give moderate to low correlation values overall. We conclude that the method of estimating 
nucleosome position is noisy, and the correlation between nucleosome shift and transcription frequency is 
moderate, but there is a significant linkage between these factors.

Fig 5SC

Fig 5SD



Fig 5SE, 5SF. A FACT mutant fails to maintain the normal low nucleosome occupancy observed in frequently 
transcribed genes.
 (E) Average nucleosome occupancy normalized for gene length was plotted as in Fig 5B. Genes 
were parsed into deciles based on the rlog2(mRNA, sense strand) values for the WT strain from this study 
(1st-10th percentile is low, 45-55 is middle, 90-100 is high). The most frequently transcribed genes in the WT 
strain showed low nucleosome occupancy upstream, in the NDR, across the gene body, and downstream 
(red line). This effect was less prominent in the H3-K56Q strains (higher nucleosome occupancy for the 
frequently transcribed genes), and even less in pob3-Q308K mutants. To quantitate this, we calculated the 
average nucleosome occupancy in gene bodies. To avoid complications arising from the 5’ end increase/3’ end 
decrease in nucleosome occupancy noted in Figs 5B-D, we used only the central portion of the averaged gene 
(30% to 70% of the average transcription unit length). (F) The decile with the lowest abundance of transcripts 
showed small changes in a box-whisker plot generated as described above, but the decreased abundance in 
highly transcribed genes, and the loss of this feature in mutant strains, were supported by statistical analysis 
(unpaired t tests with the values indicated). 

Fig 5SE

Fig 5SF



Fig 5SG. Increased nucleosome occupancy in frequently transcribed genes is visible without normalizing gene 
length.
 Genes were binned into deciles as in Fig 5SE, but the average nucleosome occupancy was plotted for 
genes aligned by the TSS to ensure that the effects noted in Fig 5SE-F are not an artefact of normalization.

Fig 5SH. Effects of transcription frequency on 3’ end nucleosome occupancy changes in mutants.
 Average nucleosome occupancy was calculated as in Fig 5SE and binned into quintiles according to 
transcript abundance as in Fig 5SC, except that the region from 70% to 90% of the averaged gene was used 
to focus on the depopulation of nucleosomes over the 3’ ends of genes. Box and whisker plots were generated 
with the features noted above (box is 25th-75th percentile, whiskers 5th to 95th percentile, + is the mean), 
with a dotted line indicating the overall average for each strain. All strains displayed the strongest decreases 
in nucleosome occupancy in the region tested in genes near the middle of the abundance spectrum, with 
diminished effects in genes with both the least and the most abundant transcripts. Transcription frequency and 
nucleosome depopulation therefore display a complex relationship.

Fig 5SG

Fig 5SH



Fig 5SI

Fig 5SI. Effects of the orientation of the downstream neighbor on 3’ end nucleosome occupancy
 Nucleosome occupancy profiles were aligned by the terminal nucleosome for 5545 genes as in Fig 5D 
(black line). 3922 of these were readily oriented relative to the neighboring gene downstream, and this subset 
did not have a different nucleosome occupancy profile than the larger group (dotted line). When separated 
into genes with downstream neighbors transcribed in the same direction as the target gene (the downstream 
region is the promoter for the neighbor) and those with converging transcription (the downstream region is the 
termination site for both genes), distinctive patterns were observed. Target genes whose 3’ end contained the 
promoter of the downstream neighbor had higher occupancy of the terminal nucleosome, and lower occupancy 
downstream (green compared to blue lines). This is consistent with a promoter/NDR in this region, possibly 
leading to enhanced positioning of the sentinel -1 nucleosome for that promoter/the terminal nucleosome of the 
target gene. These patterns were retained in mutants, albeit with lower overall occupancy as noted in Fig 5C 
(right panel; only the more severe combined mutant is shown).



Fig 6S

Fig 6S. Browser tracks illustrating features of chromatin and expression changes revealed by global analysis. 
 Bigwig tracks were loaded into the Integrative Genomics Viewer (IGV, robinSon et al. 2011; 
thorvaldSdottir et al. 2013). 12 kb of the region near CHA1 are shown. The top three tracks show forward 
RNA reads, with the top track showing the values for the WT strain (gray) overlaid over the values for the H3-
K56Q pob3-Q308K strain (magenta). The location of each annotated gene oriented in the forward direction 
is indicated. The second track shows the difference between the WT and mutant values with green signals 
indicating increased transcript levels in the mutant and red indicating a decrease in the mutant. The third track 
shows a similar difference map comparing the values obtained with the spt16-G132D mutant after a 45-minute 
incubation at 37° relative to the same strain prior to inactivation of FACT, using data published in GSE66215 
(Feng et al. 2016). These tracks therefore show the relative transcript levels in our WT and mutant strains, the 
change in this combined mutant strain, and the same information for acute withdrawal of FACT. The next three 
tracks are the same as above except for RNA representing the reverse strand, and the bottom three tracks are 
the same as above except they show nucleosome occupancy revealed by MNase-seq. Numbers indicate the 
range of values plotted.
 Transcription of CHA1 is typically repressed unless serine or threonine are the sole nitrogen source 
available (PeterSen et al. 1988). This is not the case for the datasets shown, so the WT strain produced few 
transcripts. In both cases, the mutant strains failed to maintain repression, leading to increased transcript 
levels, with a more dramatic increase after acute withdrawal of FACT. Increased transcript accumulation was 
associated with noticeable loss of nucleosome occupancy over the gene body after acute FACT withdrawal, 
but the H3-K56Q pob3-Q308K strain displayed little change in nucleosome positioning and a small increase 
in occupancy. MRC1 displayed signs of strong nucleosome occupancy loss throughout the gene and potential 
activation of a cryptic bidirectional promoter, as transcript accumulation was enhanced in both directions 
beginning in the middle of the gene. No similar effect was observed in our data, indicating different effects of 
the chronic and acute FACT defects. As with CHA1, PRD1 also displayed increased transcript accumulation in 
the H3-K56Q pob3-Q308K mutant, and again this was associated with an increase in nucleosome occupancy 
over the 5’ region of the gene and its promoter, in contrast to the expectation that elevated nucleosome 
occupancy would cause decreased transcription. KRR1 displayed mixed effects on nucleosome occupancy, 
but each of the other genes displayed the decrease observed in the global analysis in Figs 5B, 5D, 5SE, and 
5SH. 



Fig 7SA, 7SB. Browser tracks illustrating different classes of antisense effects
 Tracks are as described in Fig 6SB. (A) ~10 kb near the CDC6 locus. This gene displays a large 
increase in antisense transcript signal centered over the +2 nucleosome (note that the forward RNA track is 
displayed on a scale from 0 to 4 whereas the reverse track is 0 to 10 to allow the effect to be fully observed). 
While antisense transcript signal is significant from this region out through the promoter of CDC6, it diminishes 
near the edge of the +1 nucleosome, without any notable change in the occupancy or positioning of either 
nucleosome, and a slight increase in the +3 nucleosome where the antisense transcription presumably 
initiates. Sense transcript accumulation is overall increased, indicating that the antisense transcription does 
not block use of the CDC6 promoter. Acute loss of FACT had a quantitatively and qualitatively different effect, 
but instead caused a strong antisense signal downstream of CDC6, apparently initiating in the neighboring 
gene YJL193W, without strongly affecting overall transcription from this gene (although possibly activating a 
bidirectional cryptic promoter). All 5 genes shown display the pattern of 3’ end nucleosome loss, while this is 
less apparent after acute withdrawal of FACT. 
(B) Tracks are the same as above, except 5.6 kb near SRL4 are shown. The forward and reverse RNA tracks 
are shown on the same scale to highlight the increase in both sets of signals for this gene, with greater 
antisense than sense transcript levels. In this case, the antisense transcription occurs across the gene body, 
rather than at the 5’ end. Acute loss of FACT causes a similar, but larger, effect on both sense and antisense 
transcript accumulation, but the two strains show opposite effects on nucleosome occupancy (decreased 
in H3-K56Q pob3-Q308K, increased in spt16-G132D at 37°). SVL3 again illustrates the 3’ end nucleosome 
depopulation observed in our mutants, distinct from the pattern caused by acute FACT withdrawal. 

Fig 7SA

Fig 7SB



Supplementary Methods
RNA-seq: Three independent cultures for each genotype (Table S1) were grown to an OD of about 0.7 in rich 
medium at 30°, harvested by centrifugation, and frozen in liquid nitrogen. RNA was extracted with 0.5% SDS 
and phenol at pH 4.3 at 65° for one hour, pelleted in 5.7 M cesium chloride, then purified using Qiagen RNeasy 
Mini kits according to the manufacturer’s instructions. Libraries were prepared with NEBNext Directional RNA 
Library kits followed by Illumina Ribo-Zero Gold kits, and sequenced using the Illumina HiSeq 50 single-read 
protocol.
 Reads were aligned to the yeast genome (version R64 or SacCer3) using Novoalign (version 2.8, 
http://www.novocraft.com/products/novoalign/) with an index containing splice junctions prepared with USeq 
MakeTranscriptome (https://github.com/HuntsmanCancerInstitute/USeq). Alignments to splice junctions were 
converted to genomic alignments with USeq SamTranscriptomeParser (release 9.1.3), allowing for only 1 
multi-mapper randomly assigned. Counts and TPM values were generated using the BioToolBox (version 
1.53, https://github.com/tjparnell/biotoolbox) get_datasets script, restricting as necessary by strand, relative 
coordinates, and/or percentage of transcript length. Differential expression was performed with DESeq2 
(version 1.16; love et al. 2014). All samples were loaded into a DESeq2 matrix and individual contrasts were 
applied for each genotype versus WT; log2 fold changes were reported as shrunken values using the lfcShrink 
function. Genes were selected for significance based on both adjusted P-value (< 0.01) and log2 fold change 
(absolute > 1). For plot generation, regularized log2 (rlog2) counts were generated using DESeq2. To remove 
slow-growth signatures, the rlog2 values were processed using the R script described (o’duibhir et al. 2014). 
 For spatial analysis, RNA-seq coverage files were generated with BioToolBox bam2wig using RPM 
(Reads Per Million) depth scaling and averaging the depth-normalized coverage among the biological 
replicates. For convenient plotting, this data was then log2 transformed using BioToolBox manipulate_wig. Data 
was collected as the mean coverage depth in windows across regions of interest such as average length gene 
(BioToolBox script get_binned_data) or around promoters or 3’ ends of genes (BioToolBox script get_relative_
data).

MNase-seq: Three independent cultures for each genotype (Table S1) were grown as above to an OD of 
about 0.8, then formaldehyde was added to a final concentration of 1% and the samples were shaken at RT 
for 20 minutes. Glycine was added to 0.2 M, then cells were harvested, washed twice, then frozen in liquid 
nitrogen. Cell walls were removed with lyticase (Sigma-Aldrich), spheroplasts were lysed in 1% Triton X-100, 
and chromatin was digested with MNase (Worthington) after testing titrations to determine the optimal level of 
digestion. After reversing crosslinks for 5 hours at 65°, DNA was recovered by ethanol precipitation, treated 
with RNase A and Proteinase K (NEB) and purified on Qiaquick PCR Purification kits (Qiagen). Libraries were 
prepared with NEBNext ChIP-Seq kits, then the ~270 bp band was purified by agarose gel electrophoresis 
followed by extraction using MinElute Gel Extraction kits (Qiagen) and sequencing by the Illumina HiSeq 50 
single-read method.
 Reads were aligned to the genome using Novoalign (version 2.8), allowing for zero multi-mapping 
alignments and filtering for a mapping quality > 13. Samples had about 50-60% duplication rates. To reduce 
and normalize duplicate reads while maintaining biological enrichment, duplicate reads were randomly 
subsampled to a uniform rate of 40% using the bam_partial_dedup application (version 1.7, https://github.
com/HuntsmanCancerInstitute/MultiRepMacsChIPSeq). Normalized fragment coverage tracks were generated 
using BioToolBox bam2wig, extending the fragment to 150 bp, and RPM depth-normalization. To compare 
biological replicates, the mean fragment coverage was collected in windows of 10 or 25 bp across the genome 
for each separate replicate, restricted to promoter regions (-400 to +800), and PCA plots were generated with 
R. For subsequent analysis, biological replicates were RPM normalized and averaged. 
 Nucleosome profiles were collected using the BioToolBox program get_relative_data as described 
above. To identify and map nucleosome positions, scripts used in the package https://github.com/tjparnell/
biotoolbox-nucleosome were utilized. As input data, nucleosome fragment midpoint occupancy was generated 
with BioToolBox bam2wig, recording start positions shifted downstream by 74 bp with RPM normalization and 
averaging between replicates. Nucleosomes were called with map_nucleosomes.pl using a threshold of 0.2. 
Nucleosome mappings were re-verified with verify_nucleosome_mapping.pl, filtering overlapping nucleosomes 
with maximum overlap of 35 bp and re-centering enabled (the majority of overlapping nucleosomes are in 
ambiguous areas with poor phasing, usually in the middle of long genes). This identified 62,083 nucleosomes 
in the WT genome. Nucleosomes were assigned to relative genic positions (-1, +1, +2, +3, and +4) with 
the script in the yeast_positioned_nucleosomes subfolder in the BioToolBox-nucleosome package. To 
correlate shift positions, the BioToolBox application correlate_position_data was used with the mapped genic 
nucleosomes with a radius of 50 bp from the midpoint and “skinny” nucleosome fragment coverage files. The 
skinny nucleosome fragment coverage was prepared using BioToolBox bam2wig with a shift value of 37 bp 
and extension of 75 bp, essentially recording the middle 50% of the predicted fragment to accentuate the core 
occupancy of the nucleosome.
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