Genetically distinct behavioral modules underlie natural variation in thermal performance curves

Gregory W. Stegeman, Scott E. Baird, William S. Ryu, Asher D. Cutter

Supplementary Tables S1, S3, S4, S5, S6 (filenames listed for S2 and S7)

Supplementary Figures S1-S12

Supplementary Tables

	Phylogeographic	Geographic
Strain name	group****	origin
AF16*	Tropical	India
ED3083	Tropical	South Africa
VT847**	Tropical	Hawaii, USA
NIC65***	Tropical	French Guiana
JU1338***	Tropical	India
GXW0023***	Tropical	China
NIC21	Tropical	Taiwan
JU1908***	Tropical	Australia
HK104**	Temperate	Japan
EG4181***	Temperate	Utah, USA
JU439	Temperate	Iceland
QX1547***	Temperate	Tennessee, USA
NIC6	Temperate	Switzerland
PB826	Temperate	Ohio, USA
QR24***	Montreal	Quebec, Canada
QR25***	Montreal	Quebec, Canada
JU1341***	Kerala	India
JU1345	Kerala	India
JU1348***	Kerala	India
ED3092	Nairobi	Kenya
ED3098	Nairobi	Kenya
ED3101***	Nairobi	Kenya
VX0034***	Hubei	China
NIC20***	Taiwan	Taiwan

Supplementary Table S1. C. briggsae wild isolate strain origin and background.

*genome data in (STEIN *et al.* 2003); ** genome data in (HILLIER *et al.* 2007); *** genome data in (THOMAS *et al.* 2015); **** population structure designations in (FELIX *et al.* 2013)

Supplementary Table S2. RIL strains and genotypes.

SuppTable_S2_CbrQTL_gen_h2na.csv

Supplementary Table S3. NIL markers.

position	6230047	6741889	14167323	14794163
enzyme	DraI	DraI	DraI	DraI
Tm (forward)	55	54.36	55.15	55.29
Sequence (forward) Tm (reverse)	TGTACCTGAAT TTTCATTGGTA 55	GAAAATTATGA ACTTTCCGATT 55.11	AAAGTGTGATA CGGGAAATAAG 54.57	CTTCCTCTTCT GTTGTGAAAAT 55.99
Sequence (reverse) Size	AACTTTAGTTT CCGAACCATC 742	AAAACATTGGT ATGTGTGTGTCAG 740	TTTGAAGTTAGC TTTGAGAATTT 753	CTATCCTGCCA AGAAGATGAT 730
AF16 fragments	344, 377	428, 291	732	473, 236
HK104 fragments	721	719	341, 391	709

Supplementary Table S4. Parameter estimates from three parameter logistic function fit to Locomotion index (LI1) values from pooled wild isolate strains of *C. briggsae*.

	Rearing temperature	Asymptote (α)* (LI1)	Slope (<i>β</i>)*	Inflection point (<i>t</i>)* (°C)
er (16°C	0.344 ± 0.002	0.461 ± 0.008	15.628 ± 0.046
Lower TPC	23°C	0.414 ± 0.002	0.659 ± 0.011	17.623 ± 0.030
	28°C	0.375 ± 0.002	0.787 ± 0.015	18.885 ± 0.030
Ger	16°C	0.345 ± 0.003	-0.854 ± 0.025	30.866 ± 0.043
Highel TPC	23°C	0.402 ± 0.002	-0.788 ± 0.018	32.860 ± 0.036
Ξ.	28°C	0.376 ± 0.002	-0.683 ± 0.016	33.086 ± 0.044

*Parameter estimates ± 1 standard error

Supplementary Table S5. Position, significance and heritability of QTL peaks from multiple imputation QTL analysis of 'synthetic' principal component traits, function-valued traits, and univariate locomotion index (LI7 at 35.6°C).

Phenotype full name	Chromosome	map position (cM)*	nucleotide position (Mbp)**	Bayes interval L-R marker position (Mbp)	H ^{2***}	LOD	P****
Principal Component 5	1	82.50	13.75	13.06-14.72	0.082	2.83	0.0332
Principal Component 1	2	34.58	6.5	5.36-11.12	0.128	4.54	0.0012
Asymptote (α)	2	39.55	9.91	6.33-11.00	0.192	7.09	< 0.0001
Principal Component 6	2	42.59	11.18	0.64-12.47	0.115	4.05	0.002
Principal Component 3	3	37.61	4.09	1.11-14.58	0.082	2.83	0.0452
Asymptote (α)	4	0.30	0.55	0.09-2.42	0.085	2.95	0.0332
Principal Component 3	5	30.50	7.69	3.45-11.62	0.117	4.13	0.0036
Inflection point (τ)	5	32.15	8.08	5.88-12.66	0.146	5.23	< 0.0001
Locomotion (LI7) at 35.6°C	5	37.35	11.56	6.19-13.01	0.276	10.74	< 0.0001
Principal Component 2	5	37.66	11.62	6.75-14.30	0.147	5.27	< 0.0001
Slope (β)	5	37.66	11.62	5.34-13.90	0.203	7.52	< 0.0001
Principal Component 3	Х	44.36	19.29	16.52-20.38	0.148	5.3	0.0004
Principal Component 4			no sigr	nificant QTL			
Principal Component 7			no sigr	nificant QTL			
Principal Component 8			no sigr	nificant QTL			

* location of the LOD peak on the expanded genetic map of the RILs.

** location of the nearest genotyped marker to the LOD peak.

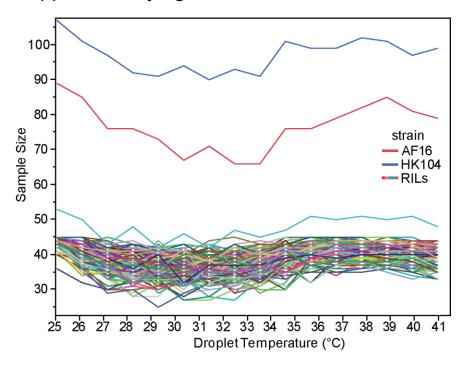
*** QTL heritability estimated as $1 - 10^{-2 \text{ LOD / n}}$ (n = number of RILs).

**** P-value reflects the 5% significance for LOD threshold from 2500 permutations of the data for each phenotype individually (not corrected for multiple hypotheses with Bonferroni correction 0.05/12 = 0.0042).

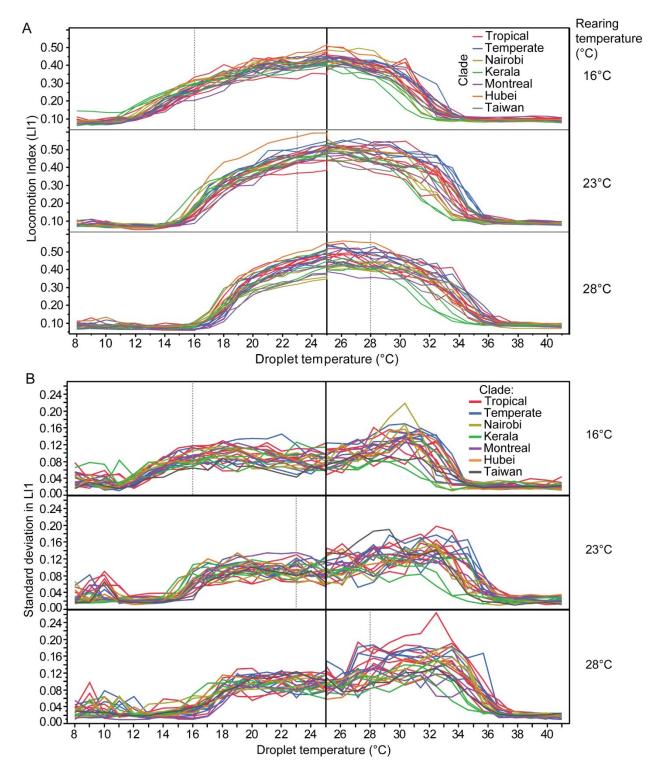
Phenotype	Locus 1*	Locus 2*	Model**	lod.fv1	p-value	lod.av1	p-value	lod.int	p-value
Asymptote (α)	II:39.5	III:60	Additive	3.49	0.31	3.47	0.008	0.025	1
Asymptote (α)	II:39.5	IV:0.5	Additive	3	0.609	3	0.022	0.006	1
PC1	II:39.5	III:0	Additive	3.55	0.254	3.45	0.007	0.104	1
PC1	II:34.5	V:77.5	Additive	3.63	0.223	3.57	0.005	0.057	1
PC2	II:22.5***	V:38	Additive	4.5	0.037	4.16	0	0.338	1
PC3	III:37.5	V:23.5***	Additive	6.18	0.001	3.65	0.005	2.528	0.4256
PC3	IV:46.5	V:31.5	Additive	3.04	0.546	2.99	0.019	0.051	1
PC3	V:28.5	X:44.5***	Additive	4.89	0.018	4	0.002	0.889	0.9998
PC5	III:37***	IV:48***	Interaction	5.73	0.027	1.33	0.847	4.396	0.0302
Slope (β)			NA						
Inflection point (τ)			NA						
PC4			NA						
PC6			NA						
LI7 at 35.6°C			NA						

Supplementary Table S6. Additive and epistatic interaction effects from two-dimensional QTL models.

* Chromosome map position (cM) on the expanded RIL genetic map.

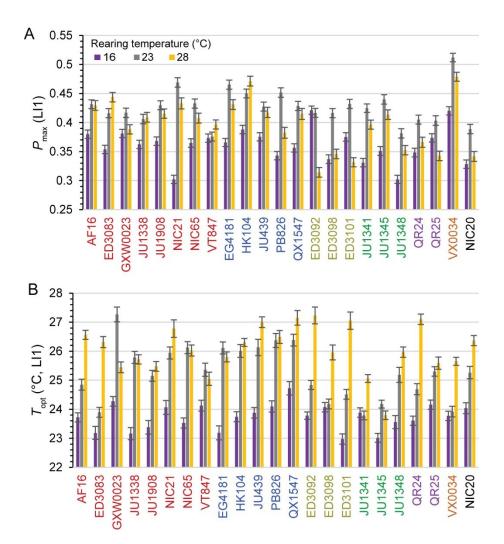

** Interaction model type determined from a significant full model (2-dimensional QTL scan in r/qtl) allowing for interactions (lod.fv1) when additive model (lod.av1) was not; additive model type obtained from significant lod.av1 and non-significant lod.fv1, or by a non-significant interaction between them (lod.int); significant model statistics shown in bold.

*** Change in position by >5cM between models for lod.fv1 and lod.av1.

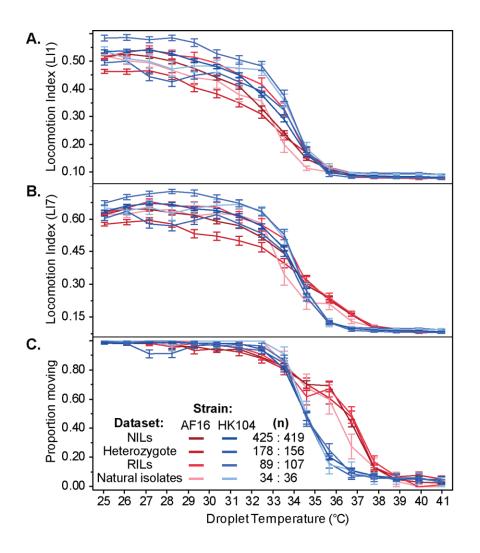

Supplementary Table S7. Genes with coding differences between Tropical and Temperate clade *C. briggsae* strains (from Thomas et al. 2015) in the Chromosome V QTL region.

SuppTable_S7 - Subset of genes with nonsynonymous changes and GO terms.xlsx

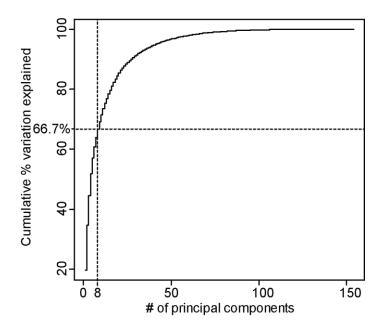
Supplementary figures



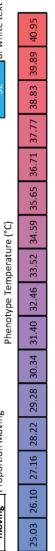
Supplementary Figure S1. Number of worms per strain passing quality filters at each temperature. All strains tested \geq 45 individuals (except n=36 for PB1209). A minimum of 25 individuals were included in all means for a given temperature.



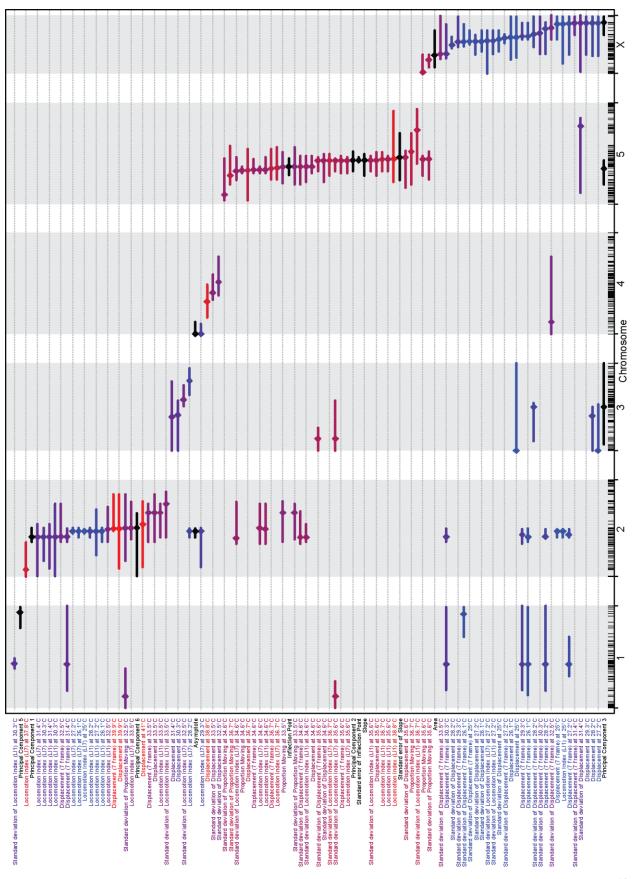
Supplementary Figure S2. Effect of rearing temperature on locomotory performance for each wild isolate strain of *C. briggsae*. (A) Thermal performance curves (TPCs) for mean LI1 locomotion index for each of 23 strains at three rearing temperatures (16°C, 23°C, 28°C; dashed vertical lines). (B) The standard deviation across individuals in LI1 for each strain. Elevated


values at temperatures below 12°C reflect condensation artifacts in the image analysis. Plots in A and B show results of two experiments, one decreasing and one increasing temperature from an initial assay temperature of 25°C (black vertical line). Strains are color coded according to phylogeographic group: red – Tropical (n=8 strains), blue – Temperate (n=5), yellow – Nairobi (n=3), green – Kerala (n=3), purple – Montreal (n=2), orange – Hubei (n=1), black – Taiwan (n=1).

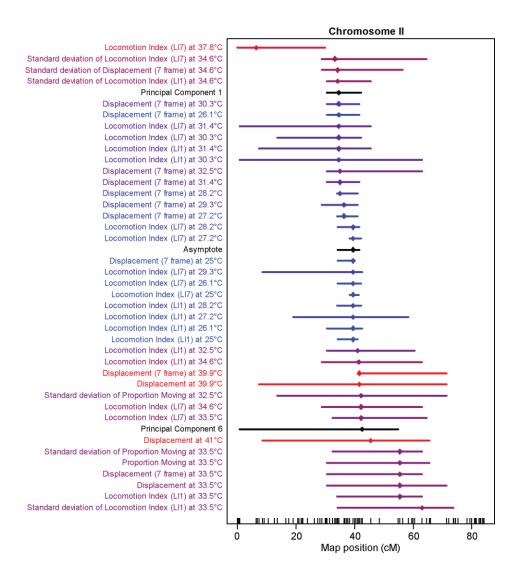
Supplementary Figure S3. Estimates of (A) P_{max} and (B) T_{opt} for each wild isolate strain of *C*. *briggsae* when reared under three temperature conditions. Error bars indicate ±1 standard error.

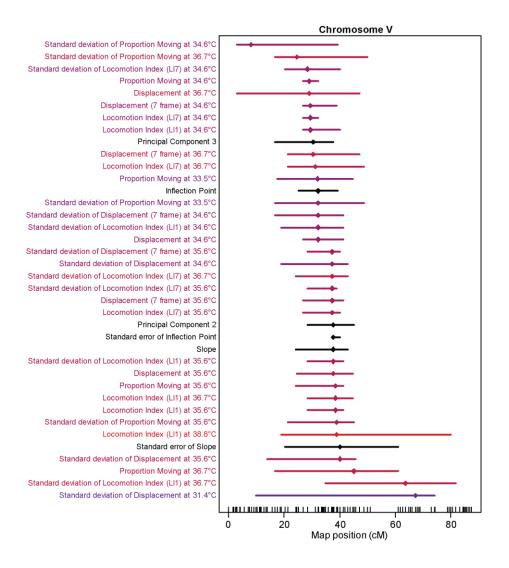


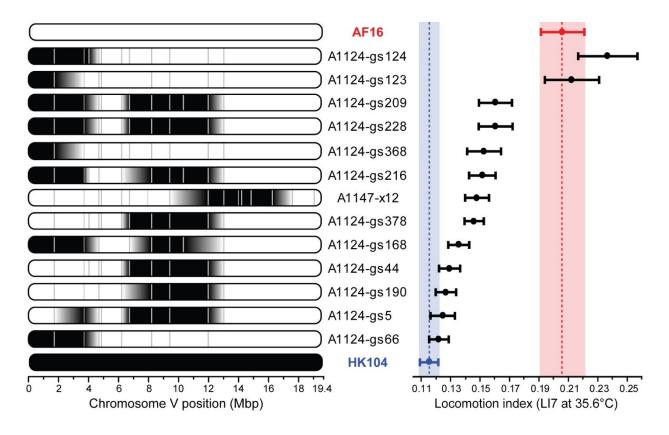
Supplementary Figure S4. Repeatability of multiple metrics of thermal performance for AF16 (red lines) and HK104 (blue lines) strains across four independent experiments: (**A**) LI1 locomotion index, (**B**) LI7 locomotion index, (**C**) proportion of animals moving. All animals reared at 23°C. Error bars indicate \pm 1SEM; darker lines indicate higher sample size for the corresponding experiment.

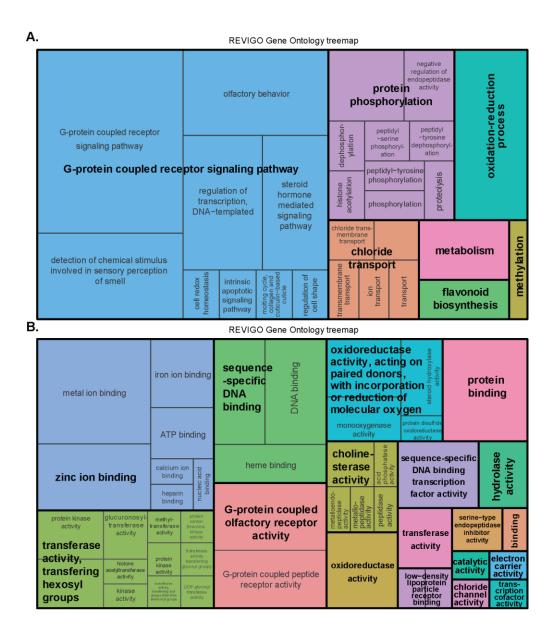


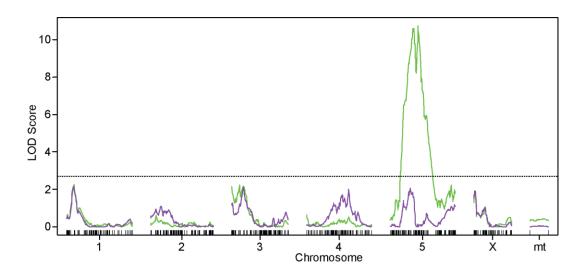
Supplementary Figure S5. Cumulative fraction of variation in 167 trait metrics explained by principal component axes. Horizontal and vertical dashed lines indicate the 8th principal component (PC8), which corresponds to ~66.7% of total variation explained by PC1 through PC8.


).256).208	0.195	0.190	0.190	0.186).182	0.170	0.169	0.159	0.159	0.146	0.146	0.146	0.137	0.135	0.135	0.133	0.132	0.125	0.125	0.123	0.121	0.118	0.117	0.114	0.111	0.110	0.109				100	
H. PC8	std disp7 39 0 std disp7 38 0	std disp 39 0	2	disp7_39_0	std_disp7_37_0	std disp 38 0	<u>11 38</u>	<u>11 39</u> 0	<u>11 36</u> 0	<u>11 40</u> 0	LI7_37 0	std_disp_25_0	std disp 40	LI7_38 0	std_L17_25 0	disp7_40_0	8		std_disp7_36_0		8_29		std disp 37 0	39	<u>std LI 38</u> 0	moving_37 0	moving_29	moving_31 0		Absolute value of weight	e in values	60 70 80 90	90 Negative weights in magenta
-	0.197 0.184	0.170	0.166	0.163	.156	0.156	.153	0.151	0.150	0.143	0.139	0.137	0.136	0.133	0.133	0.133	0.132	0.131	0.130	0.129	0.128	0.124	0.123	0.122	0.122	.121	0.119	.118		e value	e of ran	40 50	ive weig
2				_26	25		29	66		39			29									28		28	<u>29</u>	38 0	<u>33</u>	25 0		Absolut	rcentag	10 20 30 40	Negat
PC7	std_disp7_25 std_disp7_26	std_L17_26	<u>std LI 25</u>	std_moving.	std_LI7	moving_26	moving.	moving	<u>std LI 37</u>	td_moving	<u>std LI 38</u>	<u>std LI 36</u>	std_moving.	<u>std LI 39</u>	std_moving_25	std_L17_39	moving_28	<u>std disp 29</u>	std_moving_28	moving_25	std disp 26	std_LI7_	<u>std LI 40</u>	std LI	<u>std Ll</u>	std_LI7_	std_LI7_	std disp				0 10	06
ю.			1 00	5 sto			4	7	P.	s	2	2	2	0	7		2	0	9 stc						5	LO.	LU L				1		
	0.165	0.164	1 00	0.15	0.150	40 0.148	0.14	0.13	0.137	0.133	25 0.13	0.13	33 0.1 3	0.130	ite 0.12	0.125		0.12	0.11		0.117			0.116	0.115	0.11	0.115	0.113		octimat,		ation	ror
PC6	moving_39 disp7_36	std_L17_39	moving 39	LI7_37	std_L17_40	moving	LI7_36	disp7_37	std LI 39	moving_25	_moving_	<u>LI 36</u>	moving_33	moving_40	owthRa	std LI 40	std_disp7_36	<u>std LI 25</u>	<u>disp_36</u>	std_disp_32	std_L17_30	std_L17_33	moving_33	std_L17_34	<u>std LI 38</u>	disp 38	moving_38	<u>std LI 34</u>	timate	motor	or octin	ind devi	dard er
Ľ.	dis	std ctd n	std_n	L L	std	std_n	L	dis	<u>sto</u>	bm	std_n	Ī	std_n	om	SE_Gr	<u>sto</u>	std	<u>sta</u>	di	<u>std</u>	std	std	0 E	std	<u>sta</u>	di	0 E	<u>st</u> a	otoroci			Standa	t is Stan
	0.174 0.173	0.149	0.145	0.141	0.140	0.139	0.132	0.130	0.130	0.128	0.128	0.127	0.123	0.122	0.122	0.120	0.119	0.117	0.116	0.112	0.111	0.111	0.109	0.109	0.109	0.109	0.109	0.107	Slone narameter estimate	Jobe parameter commune Inflaction Doint parameter actimate	Assumptoto poromotor octimato	White text is Standard deviation	or white text is Standard error
PC5	/thRate nRate	<u>8_</u> 32	Asymptote	32	36	35	<u>32</u>	<u> 31</u>	40	I <u>g_</u> 36	<u>g_</u> 31	35	엹	7_31	32	InflectionPt	39	2	32	p7 31	7_36	8_37	8	<u>g_</u> 35	7_32	<u>1 25</u>	/ing_32	p7_35					or w
<u>م</u>	SE_GrowthRate GrowthRate	moving_32	SE_Asyr	117	11	117	П	std LI 3	L17_	moving_36	moving_31	<u>LI 35</u>	<u>LI 40</u>	std_L17_31	disp7_32	SE_Infle	LI7_39	<u>LI 39</u>	disp_32	std disp7 31	std_L17_36	moving_37	<u>LI 38</u>	moving	std_LI	std LI	std_movin	std_disp7	Slone	of action Dt	Acumutato	std	SE
ш																														2	<	٢	
	150 147	139	130	124	124	118	116	115	115	115	114	113	113	113	112	111	111	109	109	109	108	107	106	106	104	104	104	104					
_	6 0.150 0.147	27 0.139 26 0.132	<u>z</u> 0.130	29 0.124	g_27 0.124	0.118	0.116	Pt 0.115	0.115	27 0.115	0.114	26 0.113	5 0.113	<u>5</u> 0.113	8 0.112	0.111					0.108	29 0.107	0.106	26	0.104	<u>9</u> 0.104	s_29 0.104	0.104			ţ	מור	
PC4		td_LI7_27 0.139	td LI 27 0.130			LI7_40 0.118	<u>117_27</u> 0.116	flectionPt 0.115	LI7_26 0.115			26				LI7_38 0.111						29	<u>LI 40</u> 0.106	26	LI7_40	itd LI 29 0.104		LI7_29 0.104	b	-15	amo anart	allic abait	
D. PC4	std_L17_26_0.150	std_LI7_27 0.139	std LI 27 0.130	moving_29 0.124	std_moving_27 0.124	40	27	InflectionPt 0.115		moving_27 0.115			std_L17_25 0.113	0.113 std LI 25	disp7_38		std_L17_29		50			std_disp7_29	<u>LI 40</u>	std_moving_26	std_L17_40	std Ll 29 0.104	std_moving_29 0.104	29		inn Index	d one frame anart	מ מווב וומוווב מממור	(°C)
D. PC4		0.162 std_L17_27 0.139	2 10	0.152 moving_29	0.150 std moving 27 0.124	40	27	0.140 InflectionPt 0.115		0.138 moving_27	0.135 disp7_40	26						7 moving_28	0.117 moving_26	0.117 117 39	5 disp 40	std_disp7_29		std_moving_26	LI7_40	0.106 std L/ 29 0.104	0.105 std_moving_29 0.104	29	roportion moving		ocomoriantes	ובפסמו במיחוב וופוווב פלופור	erature (°C)
PC3 D. PC4	0.171 std_L17_26 0.162 std_L1_26	0.162	0.156	28 0.152 moving 29	0.150 std	0.144 LI7 40	0.143 LI7_27	0.140	0.139 LI7_26	<i>30</i> 0.138 moving 27	29 0.135 disp7_40	32 0.134 std_disp7_26	0.133 std_L17_25	0.129 std LI 25	0.128 disp7_38	0.122 LI7_38	0.120 std_L17_29	0.117 moving_28	0.117 moving_26	0.117 117 39	0.115 disp 40	0.114 std_disp7_29	35 0.112 LI 40	29 0.109 std moving 26	0.108 std_L17_40	0.106	0.105 std	27 0.104 LI7_29	d proportion moving	Τ			e Temperature (°C)
Ö	1 std_L17_26 2 std_L1_26	1 0.162 0.160	2 0.156	0.152 moving_29	std	117_40	3 LI7_27		9 LI7_26	0.138 moving_27	0.135 disp7_40	4 std_disp7_26	3 std_L17_25	9 <u>std LI 25</u>	disp7_38	2 LI7_38	0.120 std_L17_29	0.117 moving_28	0.117 moving_26	32 0.117 LI7_39	Z 0.115 disp 40	1 0.114 std_disp7_29	35 0.112 LI 40	29 0.109 std_moving_26	std_L17_40		disp7_25 0.105 std_moving_29_0.104	29	hold	Τ			henotype Temperature (°C)
Ö	std disp7 32 0.171 std L17 26 std disp 31 0.162 std L1 26	std_disp7_31 0.162	std disp 32 0.156	v std_disp7_28 0.152 moving_29	std disp 29 0.150 std	disp_25 0.144 LI7_40	disp_26 0.143 UI7_27	<u>std disp 28</u> 0.140	<u>std LI 31</u> 0.139 LI7_26	std_disp7_30 0.138 moving_27	std_disp7_29 0.135 disp7_40	std_L17_32 0.134 std_disp7_26	<u>std_disp_30_0.133</u> std_L17_25	disp_27 0.129 std LI_25	InflectionPt 0.128 disp7_38	std LI 29 0.122 LI7 38	LI7_35 0.120 std_LI7_29	<u>std Ll 28</u> 0.117 moving 28	<u>std LI 30</u> 0.117 moving_26	std_moving_32 0.117 17 39	sta disp 27 0.115 disp 40	std_L17_31 0.114 std_disp7_29	disp7_35 0.112 LI 40	<i>std_L17_29</i> 0.109 std_moving_26	LI7_34 0.108 std_LI7_40	moving_34 0.106	disp7_25 0.105 std	std_disp7_27 0.104 LI7_29	Г	Τ			Phenotype Temperature (°C)
С. _{РСЗ} D.	0.141 std disp7 32 0.171 std L17 26 0.137 std disp 31 0.162 std L1 26	0.130 std_disp7_31_0.162	0.127 <i>std disp 32</i> 0.156	0.127 std_disp7_28 0.152 moving_29	0.126 std disp 29 0.150 std	0.126 disp 25 0.144 LIT 40	0.125 disp_26 0.143 LI7_27	0.125 std disp 28 0.140	0.125 std LI 31 0.139 LI7_26	0.124 std_disp7_30 0.138 moving_27	0.124 std_disp7_29 0.135 disp7_40	37 0.121 std_L17_32 0.134 std_disp7_26	0.121 std disp 30 0.133 std_L17_25	0.120 disp 27 0.129 std LI 25	0.119 InflectionPt 0.128 disp7_38	0.118 std Ll 29 0.122 Ll7_38	0.118 LI7_35 0.120 std_LI7_29	0.117 std L/ 28 0.117 moving 28	0.115 std Ll 30 0.117 moving 26	0.114 std_moving_32 0.117 L17_39	0.113 std disp 27 0.115 disp 40	0.113 std_L17_31 0.114 std_disp7_29	<u>38</u> 0.112 disp7_35 0.112 <u>LI 40</u>	<u>39</u> 0.111 std_L17_29 0.109 std_moving_26	40 0.111 LI7_34 0.108 std_L17_40	<u>30</u> 0.109 moving 34 0.106	0.105 std	40 0.109 std_disp7_27 0.104 U7_29	Pold	italiaizad	italicized		
Ö	std disp7 32 0.171 std L17 26 std disp 31 0.162 std L1 26	0.130 std_disp7_31_0.162	0.127 <i>std disp 32</i> 0.156	v std_disp7_28 0.152 moving_29	std disp 29 0.150 std	disp_25 0.144 LI7_40	disp_26 0.143 UI7_27	0.125 std disp 28 0.140	<u>std LI 31</u> 0.139 LI7_26	std_disp7_30 0.138 moving_27	std_disp7_29 0.135 disp7_40	moving_37 0.121 std_L17_32 0.134 std_disp7_26	<u>std_disp_30_0.133</u> std_L17_25	disp_27 0.129 std LI_25	InflectionPt 0.128 disp7_38	std LI 29 0.122 LI7 38	0.118 LI7_35 0.120 std_LI7_29	0.117 std L/ 28 0.117 moving 28	0.115 std Ll 30 0.117 moving 26	0.114 std_moving_32 0.117 L17_39	0.113 std disp 27 0.115 disp 40	7 0.113 std_L17_31 0.114 std_disp7_29	<u>38</u> 0.112 disp7_35 0.112 <u>LI 40</u>	9 0.111 std_L17_29 0.109 std_moving_26	40 0.111 LI7_34 0.108 std_L17_40	0.109 moving_34 0.106	0.109 disp7_25 0.105 std	0.109 std_disp7_27 0.104 LI7_29	Pold	italiaizad	italicized		
С. _{РСЗ} D.	LI 37 0.141 std disp7 32 0.171 std LI7 26 disp7 37 0.137 std disp 31 0.162 std LI 26	LI7_38 0.130 std disp7_31_0.162	Option Option<	disp 37 0.127 std_disp7_28 0.152 moving 29	<u>LI 36</u> 0.126 std disp 29 0.150 std	disp 40 0.126 disp 25 0.144 LI7 40	disp_39 0.125 disp_26 0.143 LI7_27	LI7_39 0.125 std disp_28 0.140	LI7_37 0.125 std LI 31 0.139 LI7_26	<u>LI 38</u> 0.124 std_disp7_30 0.138 moving_27	disp_38 0.124 std_disp7_29 0.135 disp7_40	std_moving_37 0.121 std_L17_32 0.134 std_disp7_26	LI7_40 0.121 std disp_30 0.133 std_L17_25	LI 39 0.120 disp 27 0.129 std LI 25	disp7_39 0.119 InflectionPt 0.128 disp7_38	<u>LI 40</u> 0.118 std LI 29 0.122 LI7_38	<u>std LI 37</u> 0.118 LI7_35 0.120 std_LI7_29	disp7_38 0.117 std Ll 28 0.117 moving 28	disp7_36 0.115 std LI 30 0.117 moving_26	<u>std Li 40</u> 0.114 std_moving_32 0.117 LI7_39	disp 35 0.113 std disp 27 0.115 disp 40	moving_37 0.113 std_L17_31 0.114 std_disp7_29	<u>std LI 38</u> 0.112 disp7_35 0.112 <u>LI 40</u>	std_L17_39 0.111 std_L17_29 0.109 std_moving_26	disp7_40 0.111 117_34 0.108 std_17_40	<i>std_L17_30</i> 0.109 moving_34 0.106	std_L17_38 0.109 disp7_25 0.105 std	std_L17_40 0.109 std_disp7_27 0.104 L17_29	Pold	italiaizad	italicized		
. PC2 C. PC3 D.	0.141 std disp7 32 0.171 std L17 26 0.137 std disp 31 0.162 std L1 26	0.130 std_disp7_31_0.162	Option Option<	0.127 std_disp7_28 0.152 moving_29	0.126 std disp 29 0.150 std	0.126 disp 25 0.144 LIT 40	0.125 disp_26 0.143 LI7_27	0.125 std disp 28 0.140	0.125 std LI 31 0.139 LI7_26	0.124 std_disp7_30 0.138 moving_27	0.124 std_disp7_29 0.135 disp7_40	moving_37 0.121 std_L17_32 0.134 std_disp7_26	0.121 std disp 30 0.133 std_L17_25	0.120 disp 27 0.129 std LI 25	0.119 InflectionPt 0.128 disp7_38	0.118 std Ll 29 0.122 Ll7_38	<u>std LI 37</u> 0.118 LI7_35 0.120 std_LI7_29	0.128 disp7_38 0.117 std L 28 0.117 moving_28	0.126 disp7_36 0.115 std LI 30 0.117 moving_26	<u>std Li 40</u> 0.114 std_moving_32 0.117 LI7_39	disp 35 0.113 std disp 27 0.115 disp 40	moving_37 0.113 std_L17_31 0.114 std_disp7_29	<u>std LI 38</u> 0.112 disp7_35 0.112 <u>LI 40</u>	std_L17_39 0.111 std_L17_29 0.109 std_moving_26	40 0.111 LI7_34 0.108 std_L17_40	<u>30 0.109 moving 34 0.106</u>	L17_38 0.109 disp7_25 0.105 std	40 0.109 std_disp7_27 0.104 U7_29	Г	italiaizad	italicized	(7 frame)	
. PC2 C. PC3 D.	LI 37 0.141 std disp7 32 0.171 std LI7 26 disp7 37 0.137 std disp 31 0.162 std LI 26	0.146 L/7 38 0.130 std disp 7 31 0.162 0.146 Jim 3c 0.130 std disp 7 31 0.162	0.145 SE_InflectionPt 0.127 std disp 32 0.156	2 0.145 disp_37 0.127 std_disp7_28 0.152 moving_29	<u>LI 36</u> 0.126 std disp 29 0.150 std	disp 40 0.126 disp 25 0.144 LI7 40	disp_39 0.125 disp_26 0.143 LI7_27	LI7_39 0.125 std disp_28 0.140	LI7_37 0.125 std LI 31 0.139 LI7_26	<u>LI 38</u> 0.124 std_disp7_30 0.138 moving_27	disp_38 0.124 std_disp7_29 0.135 disp7_40	std_moving_37 0.121 std_L17_32 0.134 std_disp7_26	LI7_40 0.121 std disp_30 0.133 std_L17_25	LI 39 0.120 disp 27 0.129 std LI 25	disp7_39 0.119 InflectionPt 0.128 disp7_38	<u>LI 40</u> 0.118 std LI 29 0.122 LI7_38	0.128 <u>std Ll 37</u> 0.118 Ll7_35 0.120 std_Ll7_29	0.128 disp7_38 0.117 std L 28 0.117 moving_28	disp7_36 0.115 std LI 30 0.117 moving_26	6 0.126 std Ll 40 0.114 std moving 32 0.117 Ll 39	0.126 disp <u>35</u> 0.113 std disp <u>27</u> 0.115 disp <u>40</u>	0.125 moving_37 0.113 std_U7_31 0.114 std_disp7_29	4 0.124 <u>std Ll 38</u> 0.112 disp7_35 0.112 <u>Ll 40</u>	std_L17_39 0.111 std_L17_29 0.109 std_moving_26	disp7_40 0.111 117_34 0.108 std_17_40	<i>std_L17_30</i> 0.109 moving_34 0.106	std_L17_38 0.109 disp7_25 0.105 std	std_L17_40 0.109 std_disp7_27 0.104 L17_29	Pold	Locomotion index (11) italiairad	Discherencet (FLL) Italicized		Proportion Moving


Supplementary Figure S6. Diagrammatic representations of phenotype weights of principal component axes PC1 to PC8 (**A-H**). Each pair of columns lists the top 30 phenotypes that contribute to a principal component axis and their absolute value weights. Short-form phenotype names explained in legend. The colour of the first column is graded according the temperature of the phenotypes (blue 25°C to red 41°C); function fit parameter phenotypes are coloured cyan, magenta or yellow; font style differences correspond to phenotype categories (see legend). White text in trait column indicates a "variation" phenotype (standard deviation for locomotion metrics, or standard error for function fit parameters); magenta text in weight column indicates a negative weight (see legend).


Supplementary Figure S7. Exploratory QTL mapping across all chromosomes for univariate trait metrics, function-valued trait phenotypes, and synthetic PC phenotypes. QTL LOD peak location and 95% Bayes intervals shown for 102 of 175 traits for each chromosome for all phenotypes that showed LOD scores above significance threshold derived from 2500 permutations of the data (P=0.05, not corrected for multiple testing). The intervals are mapped to the nearest genotyped marker (tick marks along the chromosome axis). Intervals and univariate phenotype labels are colour-coded according to temperature (blue for cooler temperatures, red for hotter temperatures).


Supplementary Figure S8. QTL LOD peak location and 95% Bayes credible interval width for phenotypes with significant QTL on Chromosome II (from Supplementary Figure S7). Significance threshold determined by 2500 permutations of the data (P=0.05 per trait, not corrected for multiple tests). Intervals and phenotype labels are colour-coded according to temperature when relevant (blue is cooler and red is hotter). Some phenotypes also had peaks on other chromosomes (see Supplementary Figure S7).


Supplementary Figure S9. QTL LOD peak location and 95% Bayes credible interval width for phenotypes with significant QTL on Chromosome V (from Supplementary Figure S7). Significance threshold determined by 2500 permutations of the data (P=0.05 per trait, not corrected for multiple tests). Intervals and phenotype labels are colour-coded according to temperature when relevant (blue is cooler and red is hotter). Some phenotypes also had peaks on other chromosomes (see Supplementary Figure S7).

Supplementary Figure S10. Schematic representation of parental strain and near isogenic line (NIL) genotypes for Chromosome V and their corresponding locomotion index (LI7) phenotypes at 35.6°C. Vertical gray lines in on chromosome diagram indicate positions of genotyped markers, with white fill indicating Tropical AF16 sequence and black indicating Temperate HK104 sequence. Gradients indicate region of uncertain breakpoint position between genotyped markers. Error bars indicate ±1 SEM.

Supplementary Figure S11. Treemap diagrams of GO term enrichment for Chromosome V QTL region. Treemaps created using REVIGO (SUPEK *et al.* 2011), such that bounding boxes of GO terms are scaled according to frequency of the term in the list of nonsynonymous gene changes within the larger QTL region of interest (3.45-14.30Mb on Chromosome V). Some lower frequency terms are combined according to semantic similarity. Note that 33 of 115 genes lacked GO terms. Overrepresentation analysis using PANTHER (<u>http://www.pantherdb.org/</u>) identified g-protein signaling pathway proteins, membrane proteins, receptors, sensory and neurological genes to be significantly overrepresented relative to the *C. briggsae* genome.

Supplementary Figure S12. Co-factor analysis of Locomotion Index (LI7) at 35.6°C QTL "twin" peak markers finds no statistical support for two separate QTL peaks. LOD values for Locomotion Index (LI7) at 35.6°C phenotype (green) shows significant QTL on Chromosome V, with two nominal LOD score peaks. LOD scores for the same phenotype that includes genotypes at marker cb3903 (37.4cM, right green "peak") as additive covariates (purple) show no QTL (BROMAN AND SEN 2009), indicating that the left "peak" is not statistically separable from the right "peak." Horizontal line indicates the LOD significance threshold from 1000 permutations of the data with the covariate included. We next evaluated a model with the two independent, non-interacting QTLs at the "split" LOD peaks for the LI7 at 35.6°C phenotype from the multiple imputation analysis (positions 37.35cM and 31.5cM on Chromosome V). This model explained 30.8% of the variation in locomotion (LI7) at 35.6° C, with LOD = 12.2 as the likelihood ratio of this full model to the null model of no QTL (P=1.05*10⁻¹²), and each QTL was significant when dropped from the model one at a time. We then tested for a second additive QTL when starting with a model that contained a QTL at 37.4cM on Chromosome V (using addqtl() from r/qtl (BROMAN AND SEN 2009) for LI7 at 35.6°C), but this analysis just added a QTL on Chromosome III at 16cM with a rather low LOD score of 2.1. When we instead fix the alternate Chromosome V locus at 30.5cM, the analysis does add another QTL on Chromosome V, but at the tip (49.0cM) and with a low LOD = 2.0 (combined two-locus LOD = 12.9, 32.2%of variation explained). Despite this meagre support for a second additive QTL on Chromosome V, the positions are inconsistent with the hypothesis of twin QTL peaks in the center of the chromosome.