
Supplementary Materials

Subcompositional dominance and distances

We consider the central log-ratio transformation in order to pursue our analysis without considering both the block effect and residuals
for the more integrated traits and residuals for protein abundances. We are aloud to do so since the clr-transformation satisfies the
subcompositional dominance property, i.e., for each couple of vectors, xxx and yyy, and for each pair of subvectors x̂xx and ŷyy of xxx and yyy,
respectively, obtained by selecting the same set of components, the distance between the subvectors is always less than or equal to the
distance between the original vectors, i.e.

d(xxx, yyy) ≥ d(x̂xx, ŷyy) (S1)

Therefore, for each zzz such that d(xxx, yyy) ≥ d(xxx, zzz), we have that, dividing eq.(S1) by d(xxx,zzz)
d(x̂xx,ẑzz) ≥ 1

αd(x̂xx, ẑzz) ≥ kd(x̂xx, ŷyy) (S2)

where α =
d(xxx,yyy)
d(xxx,zzz) ≥ 1 and k = d(x̂xx,ẑzz)

d(xxx,zzz) ≤ 1. So, since k/α ≤ 1

d(x̂xx, ŷyy) ≥ d(x̂xx, ẑzz) (S3)

As a consequence, distance relationship between the original vectors is preserved by selected subvectors.

The fitting algorithm

The hglm package implements the estimation algorithm for hierarchical generalized linear models. It fits generalized linear models
with random effects, where the random effect may come from a conjugate exponential-family distribution (Gaussian, Gamma, Beta or
inverse-Gamma) and it is possible to explicitly specify the design matrices both for the fixed and random effects, which allows fitting
correlated random effects as well as random regression models.
In order to perform the diallel analysis, we considered y, the vector of observations for the trait of interest, and we re-wrote the model
(eq.(2)) in matrix a form:

yyy = Xβββ + Zuuu + εεε (S4)

where X is the design matrix for the fixed effects, Z the design matrix for the random effects, βββ = (µ, βS.uvarum, βS.cerevisiae) and
uuu = (AwAwAw, AbAbAb, BBB, HwHwHw, HbHbHb) are respectively the vectors of fixed effects parameters and random effects parameters, and εεε is the vector of
random errors. With this notation, the construction of the model is straight forward since we just have to construct the design matrices
for both fixed and random effects.

Let n be the number of observations, J the total number of parental strains, Nintra (resp. Ninter) the number of intra-specific (resp.
inter-specific) crosses, and K the total number of random effects parameters. X is a n× 3 matrix, with, by construction, the first
column equal to (1, 1, ..., 1), while the elements of the second and third columns (for respectively S. uvarum and S. cerevisiae) are 1 or 0
depending on whether the strain is inbred and or not.
Z will be a n× K matrix and, more precisely, it can be thought as the following block matrix:

Z =

 ZAwAwAw ZAbAbAb
ZBBB ZHwHwHw ZHwHwHw

 (S5)

where ZAwAwAw , ZAbAbAb
, ZBBB, ZHwHwHw , ZHbHbHb

denote the design matrices, respectively, of the random effect parameters AwAwAw, AbAbAb, BBB, HwHwHw and HbHbHb. In
particular, ZAwAwAw , ZAbAbAb

, ZBBB are n× J matrices, ZHwHwHw
is a n× Nintra matrix and ZHbHbHb

is a n× Ninter matrix with entries:

zAwijAwijAwij
=


2 If the i-observation belongs to a parental strain, the j-th;
1 If the i-observation belongs to an hybrid achieved through an intra- specific cross

in which the parental strain j is involved;
0 otherwise;

(S6)

zAbij
AbijAbij

=


1 If the i-observation belongs to an hybrid achieved through an inter- specific cross

in which the parental strain j is involved;
0 otherwise;

(S7)

zBijBijBij =

{
1 If the i-observation belongs to a parental strain, the j-th;
0 otherwise;

(S8)

and, enumerating the intra-specific/inter-specific hybrid strains with kintra/kinter from 1 to Nintra/Ninter, respectively,

zHwikintra
Hwikintra
Hwikintra

=

{
1 If the i-observation belongs to the kintra- hybrid strain;
0 otherwise;

(S9)

zHbikinter
Hbikinter
Hbikinter

=

{
1 If the i-observation belongs to the kinter- hybrid strain;
0 otherwise;

(S10)
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Half-diallel simulation construction

In order to elucidate our findings about the decoupling of inbreeding and heterotic variances, we simulated a half-diallel between N
parental strains. We supposed the phenotypic values of each trait to depend on a fixed number of loci, L, and we considered all the
possible combinations of genetic effects, namely presence/absence of dominance, of additive × additive epistasis and of additive ×
additive epistasis.
We let the number of alleles at each locus to vary between 1 and N and we drew values for allele a at locus i (ai) from a
Gamma distribution (Γ(k, θ)), for additive × additive epistatic effect between ai and aj (aaij) and for dominance × dominance
epistatic effect (ddij) from a Gaussian distribution (N (0, σ2)). The dominance effect between alleles a and b at locus i (di

ab)
are drawn from an uniform distribution U (0, m) with m = 0.5 for dominance of the strongest allele, and m = 1 for symmet-
rical dominance. Therefore, the phenotypic value of the parental lines Pk and of the hybrid, Hlk, between parents Pk and Pl are given by:

1) Additive model1) Additive model1) Additive model
yPk = 2 ∑

i
ki , yHlk = ∑

i
ki + ∑

i
li (S11)

2) Additive model plus dominance2) Additive model plus dominance2) Additive model plus dominance
yPk = 2 ∑

i
ki , yHlk = ∑

i
ki + ∑

i
li + ∑

i
di

kl (S12)

3) Additive model plus additive × additive effect3) Additive model plus additive × additive effect3) Additive model plus additive × additive effect

yPk = 2 ∑
i

ki + ∑
ij

aaij , yHlk = ∑
i

ki + ∑
i

li (S13)

4) Additive model plus dominance × dominance effect4) Additive model plus dominance × dominance effect4) Additive model plus dominance × dominance effect

yPk = 2 ∑
i

ki , yHlk = ∑
i

ki + ∑
i

li + ∑
ij

ddij (S14)

5) Additive model plus additive × additive and dominance × dominance effect5) Additive model plus additive × additive and dominance × dominance effect5) Additive model plus additive × additive and dominance × dominance effect

yPk = 2 ∑
i

ki + ∑
ij

aaij , yHlk = ∑
i

ki + ∑
i

li + ∑
ij

ddij (S15)

6) Additive model plus dominance and additive × additive effect6) Additive model plus dominance and additive × additive effect6) Additive model plus dominance and additive × additive effect

yPk = 2 ∑
i

ki + ∑
ij

aaij , yHlk = ∑
i

ki + ∑
i

li + ∑
i

di
kl (S16)

7) Additive model plus dominance and dominance × dominance effect7) Additive model plus dominance and dominance × dominance effect7) Additive model plus dominance and dominance × dominance effect

yPk = 2 ∑
i

ki , yHlk = ∑
i

ki + ∑
i

li + ∑
i

di
kl + ∑

ij
ddij (S17)

8) Additive model plus dominance, additive × additive and dominance × dominance effect8) Additive model plus dominance, additive × additive and dominance × dominance effect8) Additive model plus dominance, additive × additive and dominance × dominance effect

yPk = 2 ∑
i

ki + ∑
ij

aaij , yHlk = ∑
i

ki + ∑
i

li + ∑
i

di
kl + ∑

ij
ddij (S18)

Inbreeding depression and heterosis variances are equal in three-parent diallel

Inbreeding and heterosis variances are equal in the particular case of a three-parent diallel when no maternal effect is present. It can be
easily seen by the direct computation of their value.
In order to do that we decompose the phenotypic values of the i−parent, Pi, as

Pd
i = µ + 2Ai (S19)

and of the i× j hybrid, Hij, as
Hd

ij = µ + Ai + Aj (S20)

where µ = 1
6 (P1 + P2 + P3 + H12 + H13 + H23) is the mean phenotypic value of the population and

Ai =
1
3
(Pi + ∑

j 6=i
Hij)− µ (S21)

the GCA of strain i. Therefore, we can express the inbreeding depression variance as the deviation of the decomposed phenotypic
value of the parents, Pd, and their true value P

Var(inbreeding) =
1
3 ∑

i
(Pd

i − Pi − (Pd − P))2 (S22)
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and the heterosis variance analogously

Var(heterosis) =
1
3 ∑

i<j
(Hd

ij − Hij − (Hd − H))2 (S23)

In which we have used the fact that Hij = Hji, since no maternal effects are present.
Substituting S19 and S21 in S22, we get

Var(inbreeding) =
1
3

3

∑
i=1

(µ + 2Ai − Pi −
1
3

3

∑
k=1

(µ + 2Ak − Pk))
2 =

=
1
3

3

∑
i=1

(µ +
2
3
(Pi + ∑

j 6=i
Hij)− 2µ− Pi −

1
3

3

∑
k=1

(µ +
2
3
(Pk + ∑

j 6=k
Hkj)− 2µ− Pk))

2 =

=
1

243

3

∑
i=1

(6Pi + 6 ∑
j 6=i

Hij − 9µ− 9Pi −
3

∑
k=1

(2Pk + 2 ∑
j 6=k

Hkj − 3µ− 3Pk))
2 =

=
1

243

3

∑
i=1

(6 ∑
j 6=i

Hij − 9µ− 3Pi +
3

∑
k=1

Pk − 4 ∑
j<k

Hkj + 9µ)2 =

=
1

243

3

∑
i=1

(−2Pi + Pj + Pk + 2Hik + 2Hij − 4Hkj)
2

(S24)

where i 6= j 6= k. In the same way, substituting S20 and S21 in S23, we get

Var(heterosis) =
1
3 ∑

i<j
(µ + Ai + Aj − Hij −

1
3 ∑

k<m
(µ + Ak + Am − Hkm))

2 =

=
1
3 ∑

i<j
(

1
3
(Pi + Pj + ∑

k 6=i
Hik + ∑

k 6=j
Hjk)− µ− Hij −

1
3 ∑

k<m
(

1
3
(Pk + Pm + ∑

l 6=k
Hkl + ∑

l 6=m
Hml)− µ− Hkm))

2 =

=
1

243 ∑
i<j

(3(Pi + Pj + ∑
k 6=i

Hik + ∑
k 6=j

Hjk)− 9µ− 9Hij − (2 ∑
k

Pk + ∑
k<m

Hkm − 9µ))2 =

=
1

243 ∑
i<j

(3(Pi + Pj + ∑
k 6=i

Hik + ∑
k 6=j

Hjk)− 9Hij − 2 ∑
k

Pk − ∑
k<m

Hkm)
2 =

=
1

243 ∑
i<j

(Pi + Pj − 2Pk − 4Hij + 2Hik + 2Hjk)
2

(S25)

where again i 6= k 6= j. Therefore,

Var(inbreeding) =
1

243

3

∑
i=1

(−2Pi + Pj + Pk + 2Hik + 2Hij − 4Hkj)
2 =

=
1

243
((−2P1 + P2 + P3 + 2H12 + 2H13 − 4H23)

2 + (−2P2 + P1 + P3 + 2H12 + 2H23 − 4H13)
2+

+(−2P3 + P1 + P2 + 2H13 + 2H23 − 4H12)
2 =

1
243 ∑

i<j
(−2Pk + Pi + Pj + 2Hik + 2Hjk − 4Hij)

2 = Var(heterosis)

(S26)

Structuration of genetic variability at the fermentation trait level

A Gaussian mixture model is run to classify life-history and fermentation traits according to their genetic variance components.
The best model clearly identify three clusters (fig.S3 and fig.S6). Cluster 1 (99.9% of good assignments) is composed by 9 traits,

characterized by having null inter-specific additive variance component, relatively low inter-specific heterosis variance and high
intra-specific additive and inbreeding components. In this cluster we can find most volatile compounds such as Octanoic acid and
Hexanol at both temperatures, Phenyl-2-ethanol, Phenyl-2-ethanol acetate and Decanoic acid at 18°C, the kinetic parameter CO2max and the
life-history trait Size-t-Nmax at 26°C. Cluster 2 (98.9% of good assignments) consists of 28 traits that are characterized by high inter-
specific additive and inbreeding components (σ2

AbAbAb
and σ2

BBB), relatively low heterosis (σ2
HwHwHw

and σ2
HbHbHb

) and intra-specific additive variances
(σ2

AwAwAw
). Most kinetic parameters and life-history traits belongs to this cluster: t-lag, Vmax, t-45, r, t-Nmax, Jmax and Viability-t-Nmax at

both temperatures; t-Vmax and t-75 at 26°C; AFtime, t-N0, Size-t-Nmax at 18°C. We can also find some basic enological parameters and
aromatic traits - Isoamyl acetate and Hexanoic acid at both temperatures; Phenyl-2-ethanol and Phenyl-2-ethanol acetate at 26°C; X4MMP,
Free SO2 and Total SO2 at 18°C. Traits attributed to cluster 3 (19 traits, 97.3% of good assignments) have high additive and heterotic
variances and null inbreeding variance. The rest of the basic enological parameters and aromatic traits along with some kinetics
parameters and life-history traits belongs to it.
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As for protein abundances, we choose to consider life-history and fermentation traits at two temperatures (18°C and 26°C) as
different traits. Indeed, after computation of genetic variance components for each trait, correlations between temperatures are not
found to be significant except for 6 traits (t-Vmax, t-45, r, t-Nmax, Viability-t-Nmax and Hexanol) that are highly and positively correlated.
All of them fall in the same cluster at the two temperatures, except t-Vmax. Overall, we find that 79% of traits do not belong to the
same cluster at the two temperatures. Further, Pearson’s correlation tests are performed to investigate the correlation between genetic
effects at the two temperatures. They were not significant except for the additive inter-specific component (cor = 0.74, p-value<0.05).
Therefore, at the fermentation trait level, genotype by environment interactions predominate.

Globally, correlations between variance components, when present, are found to be negative (fig.S4). However, the pattern changes
when considering intra-group correlations. Indeed, in cluster 2, even if inbreeding is negatively correlated to the heterotic variances, it
is positively correlated to the additive inter-specific variance, and in cluster 3, additive genetic variances are positively correlated to
each other. In cluster 1, there is no statistical significant correlation between genetic effects (fig.S7).

Therefore, we can state that three well defined groups of traits can be differentiated according to their genetic variance profiles and
we show that the part of phenotypic variation explained by the model’s parameters depends on trait’s category and temperature: in
cluster 1, we can find mostly aromatic traits; in cluster 2 kinetics parameters and life-history traits and in cluster 3 most enological
parameters. Further, closely related phenotypes show similar profiles in terms of variance components, such as CO2max, Ethanol and
Residual Sugar that clusters together at 18°C; Total SO2 and Free SO2 are found in cluster 2 at 18°C and in cluster 3 at 26°C; t-N0 and
t-lag in cluster 2 at 18°C. We finally see that inbreeding variance can be either negatively, or not correlated to heterotic effects.

Strain characterization

We characterized the strains based on their genetic contribution to the total phenotypic value of a trait at a certain temperature
(fig. S11). Strain D1 is found to be the strain with the lowest additive contribution for Phenyl-2-ethanol at both temperatures and
for Sugar.Ethanol.Yield (except in inter-specific crosses at 18°C), with the highest additive intra-specific contribution for Decanoic and
Octanoic acid, while displaying the highest heterosis contribution for Octanoic acid when crossed with E2 at 18°C, with E5 and U1
at 26°C, and for Decanoic acid when crossed with E4 at 26°C and U2 at 18°C. D2 and E2 strains have the highest or lowest additive
contributions across almost all traits, mostly fermentation kinetics parameters and life history traits. In particular, D2 strain shows the
highest intra- and inter-specific additive effects, and inbreeding values for t.45, t.75 and AFtime at both temperatures, where the highest
heterosis effect is achieved when crossed with E2, U1 for t.45 at 18°C, with E5 and U1 for t.75 with the first at both temperatures and
the latter at 18°C. Similarly, the additive intra-specific effect of U4 is the highest or the lowest for almost all aromatic traits at 18°C
(higher for Phenyl-2-ethanol, Hexanol and Hexanoic acid; lowest for Decanoic acid and Octanoic acid). Strain U1 shows the highest additive
inter-specific effect in aromatic traits at 26°C (Phenyl-2-ethanol, Phenyl-2-ethanol acetate, Hexanol, Hexanoic acid and Octanoic acid). In
particular, the heterosis effect in the inter-specific cross with strain D2 is the highest for Hexanol and with strain E2 for Phenyl-2-ethanol.
For all traits, E5 produces intermediate heterosis values when crossed with E2, E3, E4, W1, U1 and U4 at 18°C, but its cross with E4
results in the highest heterosis value for t.Nmax, and the lowest for Decanoic acid with E3 and for Total SO2 with W1 at 26°C. In the
same way, crosses between E3 and U1, U2 or U3, between E4 and U1 or W1 never show extreme heterosis values for any trait.

Supplementary tables

Table S3 Diallel table representing the mitochondrial inheritance for each phenotyped cross: the data clearly shows too many unknowns
to enter a mitochondrial effect in the model. Backslashes indicate the not phenotyped reciprocals.

P1\ P2 D1 D2 E2 E3 E4 E5 W1 U1 U2 U3 U4

D1 D1 D2 unknown \ unknown \ unknown \ U2 U3 U4

D2 \ D2 E2 \ E4 \ W1 \ \ \ \
E2 \ \ E2 unknown unknown E5 unknown \ U2 U3 U4

E3 D1 D2 \ E3 unknown \ W1 \ U2 U3 \
E4 \ \ \ \ E4 E5 W1 U1 U2 U3 U4

E5 D1 unknown \ unknown \ E5 unknown U1 U2 U3 \
W1 \ \ \ \ \ \ W1 \ U2 U3 \
U1 D1 D2 E2 E3 \ \ CW1 U1 \ \ \
U2 \ D2 \ \ \ \ \ unknown U2 \ \
U3 \ D2 \ \ \ \ \ unknown unknown U3 \
U4 \ unknown \ E3 \ E5 W1 unknown unknown unknown U4

4 M. Petrizzelli et al.
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Supplementary figures

Figure S1 Density of the variance components estimated by the hglm algorithm for the 1230 proteins. Red dashed lines represent the
fitted distributions used to simulate and test parameter inference of the proposed model.
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Figure S2 Fitted Best Linear Unbiased Predictors of the random effects parameters and predicted phenotypic value plotted against the
simulated genetic parameters and the simulated phenotypic value. Fixed the number of parental strains and the number of individuals
of each species, we performed the simulation 1000 times. Here, we show the case of eleven parents, with 7 belonging to one specie and
4 to the other.

Figure S3 Clustering profiles of fermentation and life-history traits. Clusters number are reported on the left, on the right the number
of traits found in each cluster.
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Figure S4 Global correlations between genetic variance components: on the left correlations at the proteomic level, on the right at
the more integrated level. * significant at p < 0.05; ** significant at p < 5 · 10−3; *** significant at p < 5 · 10−4; **** significant at
p < 5 · 10−5. No symbol: not significant.
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Figure S5 Pearson’s chi-square test of enrichment: For each cluster are represented the chi-square standardized residuals at 18°
(abscissa) and at 26° (ordinate).
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Figure S6 Life-history and fermentation traits profiles. Traits are identified by their label, color combinations identify the clusters
obtained by their classification based on a Gaussian Mixture model.

Figure S7 Pearson’s correlation test performed to investigate the intra-cluster correlations at the trait level: for each cluster, the figure
shows the correlation between variances of the genetic effects. * significant at p < 0.05; ** significant at p < 5 · 10−3; *** significant at
p < 5 · 10−4; **** significant at p < 5 · 10−5. No symbol: not significant.
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Figure S8 Variance components of fermentation traitsVariance components of fermentation traitsVariance components of fermentation traits. LeftLeftLeft: Traits measured at 18°C. RightRightRight: Traits measured at 26°C. Each variance
component is attributed a different color. Traits are ranked according to their cluster number at 18°C. Trait category and cluster number
is indicated on the right-hand-side of the plot.

Figure S9 Bootstrap summary example: Distribution of intra-specific variance estimates for the growth lag-phase, t.N0, at A) 18° and
B) 26°C.
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Figure S12 Interval plots. For each fermentation and life-history trait we plot the Best Linear Unbiased Predictors of the random
genetic effects estimated through the decomposition of our diallel design. The random genetic effect estimates, namely Âw, Âb, B̂, Ĥw,
Ĥb are plotted in blue (18°C), or in red (26°C). Horizontal bars are added to show, for each parameter, the region of highest density
that covers nearly 95% (∼ ±2σ̂qqq) of the parameter density. On the left hand-side of each plot we list, for each genetic effect, the strains
which have the lowest and the greatest value of the respective genetic effect. The plot shows that: (i) genetic effects differ in a large
extent between the two temperatures; (ii) additive and heterosis effects depend on the type of cross in which a line is involved (intra-
or inter-specific); (iii) for some traits, genetic variances are strongly influenced by a particular hybrid combination.
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