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1. Analytical model to derive the coefficients when considering constant, only additive 

and dominance effects (cnucl) or additive, dominance and epistatic effects (cnuclEpist) 

1.1. Constant fitness effect and constant dominance level of mutations across fitness loci 

We consider that fitness is determined by a set of N loci with two segregating alleles, a 

wild type, A, and a deleterious one, a. To illustrate the rationale of the model we first consider 

that all mutations have the same effects on fitness but these effects can differ between phases 

of the life cycle. For any locus k, fitness is as follows: 

In haploids: 

Ak  1 

ak  1 – σ 

In diploids: 

AkAk  1 

Akak  1 – hs 

akak 1 - s 

We introduce the indicator variables Xk
i that equals 1 when the ak allele is present in a haploid 

genome i and 0 otherwise. The total number of deleterious alleles carried by an individual is 

thus 𝑛𝑖 = ∑ 𝑋𝑘
𝑖𝑁

𝑘=1  for a haploid individual, and 𝑛𝑖𝑗 = ∑ (𝑋𝑘
𝑖 + 𝑋𝑘

𝑗
)𝑁

𝑘=1 = 𝑛𝑖 + 𝑛𝑗 for a diploid 

individual. We also assume that fitness is multiplicative across loci so that for haploid 

individual i: 

𝑤𝑖 = 𝑤0 (1 − 𝜎)𝑛𝑖 ≈ 𝑤0exp(−𝜎𝑛𝑖)     (1) 

where 𝑤0 represents the baseline fitness of a hypothetical haploid genotype with no 

deleterious mutations. The approximate expression is valid if we assume small fitness effects 

(𝜎 ≪ 1, and ℎ𝑠 ≪ 1 and 𝑠 ≪ 1, see below). Similarly, for diploid individual ij: 

𝑊𝑖𝑗 = 𝑊0 exp (−ℎ𝑠 ∑(𝑋𝑘
𝑖 + 𝑋𝑘

𝑗
)

𝑁

𝑘=1

− 𝑠(1 − 2ℎ)∑ 𝑋𝑘
𝑖 𝑋𝑘

𝑗

𝑁

𝑘=1

)   (2) 

The terms in the exponential can be rewritten as: 

−
𝑠

2
∑(𝑋𝑘

𝑖 + 𝑋𝑘
𝑗
)

𝑁

𝑘=1

+ 𝑠 (
1 − 2ℎ

2
)∑ (𝑋𝑘

𝑖 (1 − 𝑋𝑘
𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 ))

𝑁

𝑘=1

   (3) 

We can note that 𝑋𝑘
𝑖 (1 − 𝑋𝑘

𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 ) is 0 if the two haploid parents share the same 

allele and 1 otherwise, so 𝑑𝑖𝑗 =
1

𝑁
∑ (𝑋𝑘

𝑖 (1 − 𝑋𝑘
𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 ))𝑁
𝑘=1  is the proportion of 

selected loci that are heterozygous in the diploid offspring (i.e. the observed pairwise genetic 

distance between haploid parents i and j at the N fitness loci) between the two haploid parents. 
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So: 

𝑊𝑖𝑗 = 𝑊0 exp (−
𝑠

2
(𝑛𝑖 + 𝑛𝑗) + 𝑠 (

1 − 2ℎ

2
)𝑁𝑑𝑖𝑗)     (4) 

We also assume the following relationship between fitness effects in haploids and diploids: 

𝑠 = 𝑐 𝜎, so that (4) can also be written as: 

𝑊𝑖𝑗 = 𝑊0 exp (−
𝑐𝜎

2
(𝑛𝑖 + 𝑛𝑗) +

𝑐𝜎

2
(1 − 2ℎ)𝑁𝑑𝑖𝑗)     (5) 

Similarly, we can account for mitochondrial effects and noting 𝜎′, 𝑛𝑖
′, and 𝜎′ the 

corresponding parameters for mitochondrial mutations. 

Assuming again multiplicative and small effects, we have: 

𝑤𝑖 = 𝑤0exp(−𝜎𝑛𝑖 − 𝜎′𝑛𝑖 ′)      (6) 

and 

𝑊𝑖𝑗 = 𝑊0 exp (−
𝑐𝜎

2
(𝑛𝑖 + 𝑛𝑗) + 𝑐𝜎 (

1

2
− ℎ)𝑁𝑑𝑖𝑗 − 𝑐′𝜎′𝑛𝑖′)     (7) 

where parental i is the mitochondrial donor. 

Noting, 𝐴𝑖 = −𝜎𝑛𝑖 and 𝐴𝑖
′ = −𝜎′𝑛𝑖

′ and taking the logarithm, (6) can then be rewritten as: 

ln(𝑤𝑖) = ln(𝑤0) + 𝐴𝑖 + 𝐴𝑖
′    (8) 

and (7) as: 

ln(𝑊𝑖𝑗) = ln(𝑊0) + 𝑐
𝐴𝑖+𝐴𝑗

2
− 𝐻𝑑𝑖𝑗 + 𝑐′𝐴𝑖

′       (9),  

With 𝐻 = 𝑐𝜎(
1

2
− ℎ)𝑁. Because we do not know which alleles are deleterious, 𝑑𝑖𝑗, the 

genetic distance at the N selected nuclear loci cannot be computed directly. However, we can 

note that dij depends on the kinship, 𝑓𝑖𝑗, between the two haploid parents and on the genetic 

diversity at selected loci, as the expectation of dij over all possible pairs of haploid parents 

with a given kinship 𝑓𝑖𝑗 is: 

𝐸[𝑑𝑖𝑗] = (1 − 𝑓𝑖𝑗)
1

𝑁
∑ 2𝑥𝑘(1 − 𝑥𝑘)

𝑁

𝑘=1

     (10) 

where 𝑥𝑘is the allelic frequencies at the kth locus. Instead of dij we can thus use 𝐷𝑖𝑗, the 

genetic distance computed across the whole genome, whose expectation also verifies equation 

(10) with summation over 𝑁𝑇, the total number of deleterious or neutral loci in the genome. 

The two distances are thus expected to be proportional to a factor 𝑝 =
𝜋𝑑𝑒𝑙𝑒𝑡𝑒𝑟𝑖𝑜𝑢𝑠

𝜋𝑇
, with 𝑝 

equals the ratio of the average heterozygosity at the N selected allele (𝜋𝑑𝑒𝑙𝑒𝑡𝑒𝑟𝑖𝑜𝑢𝑠 =
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1

𝑁
∑ 2𝑥𝑘(1 − 𝑥𝑘)𝑁

𝑘=1 ) over the average heterozygosity over the whole genome (𝜋𝑇 =

1

𝑁𝑇
∑ 2𝑥𝑘(1 − 𝑥𝑘)

𝑁𝑇
𝑘=1 ). Hence, equation (9) can be rewritten as: 

ln(𝑊𝑖𝑗) = ln(𝑊0) + 𝑐
𝐴𝑖 + 𝐴𝑗

2
− 𝐻𝑝𝐷𝑖𝑗 + 𝑐′𝐴𝑖

′       (11) 

Note that ln(𝑤0) and ln(𝑊0) can include both genetic effects (e.g. a “type” factor with two 

levels (haploid vs. diploid) to test for intrinsic fitness differences between haploids and 

diploids) and environmental effects (e.g. block, treatment etc.). The coefficients 𝑐, 𝑐′, and 𝑝𝐻 

can be directly estimated from the data using this model. 

1.2. Varying fitness effects and varying dominance levels of mutations across fitness loci 

Now we can extend this model by assuming that each mutation has its own specific effect. 

For locus k, fitness is as follows: 

In haploids: 

Ak  1 

ak  1 – σk 

In diploids: 

AkAk  1 

Akak  1 – hksk 

akak 1 - sk 

For a haploid individual i: 

𝑤𝑖 = 𝑤0 exp (− ∑ 𝜎𝑘𝑋𝑘
𝑖

𝑁

𝑘=1

)   (11) 

And for a diploid individual ij: 

𝑊𝑖𝑗 = 𝑊0 exp (− ∑ ℎ𝑘𝑠𝑘(𝑋𝑘
𝑖 + 𝑋𝑘

𝑗
)

𝑁

𝑘=1

− ∑ 𝑠𝑘(1 − 2ℎ𝑘)𝑋𝑘
𝑖 𝑋𝑘

𝑗

𝑁

𝑘=1

)   (12) 

As in (3) the terms in the exponential can be rewritten as: 

− ∑ 𝑠𝑘 (
𝑋𝑘

𝑖 + 𝑋𝑘
𝑗

2
)

𝑁

𝑘=1

+ ∑ 𝑠𝑘 (
1 − 2ℎ𝑘

2
)(𝑋𝑘

𝑖 (1 − 𝑋𝑘
𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 ))

𝑁

𝑘=1

   (13) 

For each locus k, we can define two random variables Y and Z so that: 𝑦𝑘=𝑠𝑘 (
1−2ℎ𝑘

2
) and 

𝑧𝑘=(𝑋𝑘
𝑖 (1 − 𝑋𝑘

𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 )). As in the constant model above, we note the pairwise 
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genetic distance between parents: 𝐸[𝑍] = 𝑑𝑖𝑗 =
1

𝑁
∑ (𝑋𝑘

𝑖 (1 − 𝑋𝑘
𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 ))𝑁
𝑘=1  and 

𝐸[𝑌] =
1

𝑁
∑ 𝑠𝑘 (

1−2ℎ𝑘

2
) .𝑁

𝑘=1  If the number of loci is large, we have:  

∑ 𝑠𝑘 (
1−2ℎ𝑘

2
)(𝑋𝑘

𝑖 (1 − 𝑋𝑘
𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 ))𝑁
𝑘=1 = 𝑁𝐸[𝑌𝑍] = 𝑁𝐶𝑜𝑣[𝑌, 𝑍] + 𝑁𝐸[𝑌]𝐸[𝑍]. 

We assume that variation among loci in selection coefficients or in dominance is sufficiently 

small, so that 𝐶𝑜𝑣[𝑌, 𝑍] = 0. Thus, the second part of (13) is: 

∑ 𝑠𝑘 (
1 − 2ℎ𝑘

2
) (𝑋𝑘

𝑖 (1 − 𝑋𝑘
𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 ))

𝑁

𝑘=1

= 𝑑𝑖𝑗 ∑ 𝑠𝑘 (
1 − 2ℎ𝑘

2
)

𝑁

𝑘=1

   (14) 

We set: 

𝜎𝑛𝑢𝑐𝑙 =
1

𝑁
∑ 𝜎𝑘

𝑁

𝑘=1

 

𝑠𝑛𝑢𝑐𝑙 =
1

𝑁
∑ 𝑠𝑘

𝑁

𝑘=1

 

𝐻 = ∑ 𝑠𝑘 (
1 − 2ℎ𝑘

2
)

𝑁

𝑘=1

 

We also need to assume a relationship between fitness effects in homokaryons and 

heterokaryons. For each locus k, we have: 

𝑠𝑘 = 𝑐𝑘𝜎𝑘 

𝑐𝑛𝑢𝑐𝑙 =
1

𝑁
∑ 𝑐𝑘

𝑁
𝑘=1 =

𝑠𝑛𝑢𝑐𝑙

𝜎𝑛𝑢𝑐𝑙
, if we assume the covariance between 𝑐𝑘 and 𝜎𝑘is zero. 

Again, we assume that 𝑛𝑖, the number of mutations in each haploid individual is large so that: 

∑ 𝜎𝑘𝑋𝑘
𝑖

𝑁

𝑘=1

= 𝑛𝑖𝜎𝑛𝑢𝑐𝑙 

Combining these expressions, we can write fitness in (11) and (12) as: 

𝑤𝑖 = 𝑤0 exp(−𝑛𝑖𝜎𝑛𝑢𝑐𝑙)                                      (15) 

𝑊𝑖𝑗 = 𝑊0 exp (−
𝑐𝑛𝑢𝑐𝑙𝜎𝑛𝑢𝑐𝑙

2
(𝑛𝑖 + 𝑛𝑗) + 𝑑𝑖𝑗𝐻)   (16) 

Similarly, we can account for mitochondrial effects assuming 𝑁′ mitochondrial loc and set: 

𝜎𝑚𝑖𝑡 =
1

𝑁′
∑ 𝜎𝑘′

𝑁′

𝑘=1

 

𝑠𝑚𝑖𝑡 =
1

𝑁′
∑ 𝑠𝑘′

𝑁′

𝑘=1
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𝑠𝑘′ = 𝑐𝑘′𝜎𝑘′ 

𝑐𝑚𝑖𝑡 =
1

𝑁′
∑ 𝑐𝑘′

𝑁′

𝑘=1 =
𝑠𝑚𝑖𝑡

𝜎𝑚𝑖𝑡
, if we assume the covariance between 𝑐𝑘′ and 𝜎𝑘′is zero. 

Assuming multiplicative effects, we have: 

𝑤𝑖 = 𝑤0 exp(−(𝜎𝑛𝑢𝑐𝑙𝑛𝑖 + 𝜎𝑚𝑖𝑡𝑛𝑖
′))   (17) 

where 𝑛𝑖
′ is the number of mitochondrial mutant alleles and 𝜎𝑚𝑖𝑡 the average fitness effect of 

mutant alleles across 𝑁′ mitochondrial loci. 

Mating between two haploid genotypes with 𝑛𝑖 anf 𝑛𝑗 nuclear mutant alleles and where 

genotype i provides a mitochondrion with 𝑛𝑖
′ mitochondrial mutant alleles produces a diploid 

genotype of fitness:  

𝑊𝑖𝑗 = 𝑊0 exp (−𝑐𝑛𝑢𝑐𝑙𝜎𝑛𝑢𝑐𝑙 (
𝑛𝑖 + 𝑛𝑗

2
) − 𝑐𝑚𝑖𝑡𝜎𝑚𝑖𝑡𝑛𝑖

′ + 𝑑𝑖𝑗𝐻)   (18), 

where 𝑐𝑛𝑢𝑐𝑙𝜎𝑛𝑢𝑐𝑙 represents the average diploid fitness effect of nuclear mutant alleles across 

the 𝑁 selected loci and 𝑐𝑚𝑖𝑡𝜎𝑚𝑖𝑡 represents the average haploid fitness effect of mitochondrial 

mutant alleles across the 𝑁′ selected loci, 𝑑𝑖𝑗 represents the genetic distance at the N selected 

loci between haploid parents i and j and 𝑊0 represents the baseline fitness of a hypothetical 

diploid genotype with no deleterious mutations. Noting, 𝐴𝑖 = −𝜎𝑛𝑖 and 𝐴𝑖
′ = −𝜎′𝑛𝑖

′ and 

taking the logarithm, (17) can then be rewritten as: 

ln(𝑤𝑖) = ln(𝑤0) + 𝐴𝑖 + 𝐴𝑖
′    (19), 

and (18) can be rewritten as: 

ln(𝑊𝑖𝑗) = ln(𝑊0) + 𝑐𝑛𝑢𝑐𝑙
𝐴𝑖+𝐴𝑗

2
+ 𝑐𝑚𝑖𝑡𝐴𝑖

′ + 𝑑𝑖𝑗𝐻 = ln(𝑊0) + 𝑐𝑛𝑢𝑐𝑙
𝐴𝑖+𝐴𝑗

2
+ 𝑐𝑚𝑖𝑡𝐴𝑖

′ + 𝐷𝑖𝑗𝑝𝐻 

(20), 

where 𝐷𝑖𝑗 is the genetic distance computed across the whole genome and 𝑝 =
𝜋𝑑𝑒𝑙𝑒𝑡𝑒𝑟𝑖𝑜𝑢𝑠

𝜋𝑇
 (see 

Eq. (11) above for details). Again, ln(𝑤0) and ln(𝑊0) can include both genetic effects (e.g. a 

“type” factor with two levels (haploid vs. diploid) to test for intrinsic fitness differences 

between haploids and diploids) and environmental effects (e.g. block, treatment etc.). The 

coefficients 𝑐, 𝑐′, and 𝑝𝐻 can be directly estimated from the data using this model. 

1.3. Varying fitness effects, varying dominance levels of mutations and varying epistatic 

effects across fitness loci 

In the previous model epistatic interactions are not considered. Epistatic parameters cannot be 

estimated with fitness data only for haploids and diploids. Additional crosses (such as F2) 

would be necessary (for example see Lynch 1991). However, we can still write the model to 
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evaluate how epistasis might affect our previous predictions. Here we consider pairwise 

epistatic effects and neglect higher order epistatic interactions. In haploids, only additive x 

additive epistatic interactions are possible. We also assume that that they are the sole epistatic 

interactions in diploids (i.e. we neglect additive x dominance and dominance x dominance 

epistatic interactions). Two-locus fitness are thus written: 

For haploids: 

Ak Al  1 

Ak al  1 – σk 

ak Al  1 – σl 

ak al  (1 – σk)(1 – σl) + εkl 

For diploids: 

AkAk AlAl 1 

Akak AlAl 1 – hksk 

akak AlAl 1 – sk 

AkAk Alal 1 – hlsl 

Akak Alal (1 – hksk) (1 – hlsl) + ekl 

akak Alal (1 – sk) (1 – hlsl) + 2ekl 

AkAk alal 1 – sl  

Akak alal (1 – hksk)(1 – sl) + 2ekl 

akak alal (1 – sk) (1 – sl) + 4ekl 

Note that εkl and ekl can be positive or negative. 

Multilocus fitness are now be written as: 

For haploid individual i: 

𝑤𝑖 = 𝑤0 exp (− ∑ 𝜎𝑘𝑋𝑘
𝑖

𝑁

𝑘=1

− ∑ ∑𝜀𝑘𝑙𝑋𝑘
𝑖 𝑋𝑙

𝑖

𝑙>𝑘

𝑁

𝑘=1

)   (21) 

For diploid individual ij: 

𝑊𝑖𝑗 = 𝑊0 exp (− ∑ ℎ𝑘𝑠𝑘(𝑋𝑘
𝑖 + 𝑋𝑘

𝑗
)

𝑁

𝑘=1

+ ∑ 𝑠𝑘(1 − 2ℎ𝑘)𝑋𝑘
𝑖𝑋𝑘

𝑗

𝑁

𝑘=1

− ∑ ∑𝑒𝑘𝑙(𝑋𝑘
𝑖𝑋𝑙

𝑖 + 𝑋𝑘
𝑖 𝑋𝑙

𝑗
+ 𝑋𝑘

𝑗
𝑋𝑙

𝑖 + 𝑋𝑘
𝑗
𝑋𝑙

𝑗
)

𝑙>𝑘

𝑁

𝑘=1

)   (22) 

We note: 

𝜀 =
2

𝑁(𝑁 − 1)
∑ ∑𝜀𝑘𝑙

𝑙>𝑘

𝑁

𝑘=1
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𝑒 =
2

𝑁(𝑁 − 1)
∑ ∑𝑒𝑘𝑙

𝑙>𝑘

𝑁

𝑘=1

 

and we assume the following relationship between effects in haploids and diploids: 

𝑒 = 𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡𝜀 

Finally, we can express the sum involving indicator variable as follows: 

∑ ∑ 𝑋𝑘
𝑖 𝑋𝑙

𝑖

𝑙>𝑘

𝑁

𝑘=1

=
𝑛𝑖(𝑛𝑖 − 1)

2
 

∑ ∑ 𝑋𝑘
𝑗
𝑋𝑙

𝑗

𝑙>𝑘

𝑁

𝑘=1

=
𝑛𝑗(𝑛𝑗 − 1)

2
 

∑ 𝑋𝑘
𝑖 𝑋𝑘

𝑗

𝑁

𝑘=1

=
𝑛𝑖 + 𝑛𝑗

2
+

𝑁

2
𝑑𝑖𝑗 

∑ ∑(𝑋𝑘
𝑗
𝑋𝑙

𝑖 + 𝑋𝑘
𝑗
𝑋𝑙

𝑗
)

𝑙>𝑘

𝑁

𝑘=1

= ∑ ∑𝑋𝑘
𝑗
𝑋𝑙

𝑖

𝑁

𝑙=1

𝑁

𝑘=1

− ∑ 𝑋𝑘
𝑖 𝑋𝑘

𝑗

𝑁

𝑘=1

 

= 𝑛𝑖𝑛𝑗 −
𝑛𝑖 + 𝑛𝑗

2
−

𝑁

2
𝑑𝑖𝑗 =

1

2
(𝑛𝑖(𝑛𝑗 − 1) + 𝑛𝑗(𝑛𝑖 − 1) − 𝑁𝑑𝑖𝑗) 

Combining all these expressions, we can write fitness as: 

𝑤𝑖 = 𝑤0 exp (−𝑛𝑖𝜎 −
𝜀

2
𝑛𝑖(𝑛𝑖 − 1)) (23) 

𝑊𝑖𝑗 = 𝑊0 exp (−
𝑐𝑛𝑢𝑐𝑙𝜎

2
(𝑛𝑖 + 𝑛𝑗) + 𝑑𝑖𝑗 (𝐻 − 𝑛

𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡𝜀

2
)

−
𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡𝜀

2
(𝑛𝑖(𝑛𝑖 − 1) + 𝑛𝑗(𝑛𝑗 − 1) + 𝑛𝑖(𝑛𝑗 − 1) + 𝑛𝑗(𝑛𝑖 − 1)))   (24) 

Note that epistatic interactions also appear with the genetic distance term. This is due to the 

fact that in diploids, in addition to cis-interactions (which are already present in haploids) 

there are also trans-interactions (between mutations from the two haploid parents). 

From a statistical point of view, we can write: 

ln(𝑤𝑖) = ln(𝑤0) − 𝐴𝑖 − 𝐸𝑖    (25),  

ln(𝑊𝑖𝑗) = ln(𝑊0) − 𝑐𝑛𝑢𝑐𝑙
𝐴𝑖+𝐴𝑗

2
+ 𝑑𝑖𝑗 (𝐻 − 𝑛

𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡𝜀

2
) − 𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡 (𝐸𝑖 + 𝐸𝑗 +

1

4
(√(8𝐸𝑖 + 𝜀)(8𝐸𝑗 + 𝜀) − 𝜀))   (26),  

where Ei and Ej correspond to epistatic effects. If 𝑛𝑖 and 𝑛𝑗 are large, then 𝜀 ≪ 𝐸𝑖 , 𝐸𝑗 and can 

be neglected. So (25) can be approximated by: 
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ln(𝑊𝑖𝑗) ≈ ln(𝑊0) − 𝑐𝑛𝑢𝑐𝑙
𝐴𝑖+𝐴𝑗

2
+ 𝑝𝐷𝑖𝑗 (𝐻 − 𝑛

𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡𝜀

2
) − 𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡(𝐸𝑖 + 𝐸𝑗 + 2√𝐸𝑖𝐸𝑗)   

(27),  

where 𝐷𝑖𝑗 is the genetic distance computed across the whole genome and 𝑝 =
𝜋𝑑𝑒𝑙𝑒𝑡𝑒𝑟𝑖𝑜𝑢𝑠

𝜋𝑇
 (see 

Eq. (11) above for details). The 2𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡√𝐸𝑖𝐸𝑗  and −𝑛
𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡𝜀

2
 term correspond to trans-

interactions. If 𝜀 and e are null on average, as predicted by some models (Martin et al. 2007), 

(19) and (20) are valid and are not affected by epistatic interactions. If 𝜀 and e is negative 

(antagonistic epistasis), 𝑐𝑛𝑢𝑐𝑙 is under-estimated whereas H is over-estimated. For positive 𝜀 

and e (synergistic epistasis), the reverse is expected but depends on the exact values of 𝑐𝑛𝑢𝑐𝑙 

and 𝑐𝑛𝑢𝑐𝑙𝐸𝑝𝑖𝑠𝑡 . Synergistic epistasis among deleterious mutations have already been detected 

and seems more common than negative epistasis in eukaryotes (Sanjuán and Elena 2006) but 

rather low in “simple” organisms such as fungi and nematodes (Peters and Keightley 2000; 

Sanjuán and Elena 2006). 

2. Simulations to investigate the effect of the variation of selection coefficients, of 

dominance levels or of 𝒄𝒏𝒖𝒄𝒍 among loci 

We investigate the robustness of our main results regarding the estimation of pH and 𝒄𝒏𝒖𝒄𝒍 

using simulations. We consider a species where the haploid and diploid phases have equal 

lengths. Based on Eq. (1) in Scott and Rescan (2017), the equilibrium frequency of the 

deleterious allele at each locus, k,  is: 

 

𝑞𝑘 =
𝜇𝑒𝑥𝑝−𝜎𝑘

1−𝑒𝑥𝑝
−

𝜎𝑘
2 (1+𝑐𝑘 ℎ𝑘)

                                (27),  

where 𝜇 represents the mutation rate, 𝜎𝑘 is the haploid selection coefficient at locus k, ℎ𝑘 is 

the level of dominance of locus k and 𝑐𝑘  is the ratio of fitness effect in diploids over the 

fitness effect in haploids.  

We simulate an experiment using 30 haploid parents with 500 loci under selection 

with four different types of genetic architectures. (i) We assume that 𝜎𝑘, ℎ𝑘 and 𝑐𝑘 are 

constant across loci with means respectively equal to 0.01, 0.25 and 0.5 (mutation rate is fixed 

at 10-4). (ii) We assume that each 𝜎𝑘 follows a gamma distribution with mean = 0.01 and 

shape=2 (other parameters as in i). (iii) We assume that each ℎ𝑘 follows a beta distribution 

with mean = 0.25 and shape1=2 (other parameters as in i). (iv) We assume that 𝑐𝑘 (𝑐𝑘 =
𝑠𝑘

𝜎𝑘
) 

follows a beta distribution with mean = 0.5 and shape1=2 (other parameters as in i). 
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For each haploid parent and each locus k, we sample an indicator variable 𝑋𝑘 (0: wild 

type allele, 1: deleterious allele) using a Bernoulli distribution with probability 𝑞𝑘. We 

assume multiplicative effects of mutations such that: 

𝑤𝑖 = 𝑤0 ∏ (1 − 𝜎𝑘)𝑋𝑘𝑁
𝑘=1 , 

with 𝑙𝑜𝑔(𝑤0)~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 0.001) for the environmental variation around the breeding 

value. 

We use a diallel (i.e. full factorial) design and compute the fitness of each of the 900 diploid 

offspring with haploid parents i and j as: 

𝑊𝑖𝑗 = 𝑊0 ∏ (1 − 𝑐𝑘𝜎𝑘)𝑋𝑘
𝑖𝑋𝑘

𝑗
𝑁
𝑘=1 (1 − ℎ𝑘𝑐𝑘𝜎𝑘)𝑋𝑘

𝑖 (1−𝑋𝑘
𝑗
)+𝑋𝑘

𝑗
(1−𝑋𝑘

𝑖 ) , 

with 𝑙𝑜𝑔(𝑊0)~𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 0.001) for the environmental variation. We use 10 fitness 

replicate measurements for each haploid or diploid genotype. 

We estimated mid-parent heterosis as the difference between the average growth rate of a 

diploid genotype and the mean of the average growth rates of its two autozygous diploid 

parents. We computed the predicted H as: 𝐻 = ∑ 𝑐𝑘𝜎𝑘 (
1−2ℎ𝑘

2
)𝑁

𝑘=1 . According to Eq. (20), H 

represent the slope of the linear increase in mid-parent heterosis with pairwise genetic 

distance. For each of the 30 haploid parents, we also computed the ratio between its average 

fitness as an autozygous diploid over its average fitness as a haploid. The mean of the 

distribution of this ratio should be equal to 0.5 (i.e. the mean 𝑐𝑛𝑢𝑐𝑙 used for the simulations). 

For both 𝑐𝑛𝑢𝑐𝑙 and the slope of genetic distance (which is equal to H according to Eq. (20)), 

we compare the estimation of our model with the values expected based on our simulations. 

 The estimations based on our model were generally robust to variation among loci in 

selection coefficient, in dominance level or in the ratio of fitness effects in diploids vs. 

haploids (Figure S1 and S2). Variation in selection coefficient had the highest impact on our 

model prediction (Figure S1B and S2B). Indeed, very mildly deleterious mutations segregate 

at high frequencies compared to mildly deleterious mutations and are more likely to be 

homozygous in diploid offspring. Hence, the variation in selection coefficient among loci 

creates a negative covariance between 𝑠𝑘 (
1−2ℎ𝑘

2
) and (𝑋𝑘

𝑖 (1 − 𝑋𝑘
𝑗
) + 𝑋𝑘

𝑗
(1 − 𝑋𝑘

𝑖 )), as our 

model assumed that this covariance was zero, it tends to overestimate the increase in mid-

parent heterosis with genetic distance (Figure S1B). 
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Figure S1 Comparison of the predicted and fitted increase in mid-parent heterosis with 

pairwise genetic distance (predicted and fitted H) for different genetic architectures. 

Simulations of a diallel cross using 30 haploid parents (900 diploid offspring) with 500 loci 

under selection with four different types of genetic architectures: (A) assuming that 𝜎𝑘, ℎ𝑘 

and 𝑐𝑘 are constant across loci with means respectively equal to 0.01, 0.25 and 0.5 (mutation 

rate is fixed at 10-4), (B) assuming that each 𝜎𝑘 is sampled from a gamma distribution with 

mean = 0.01 and shape=2 (other parameters as in A), (C) assuming that each ℎ𝑘 is sampled 

from a gamma distribution with mean = 0.25 and shape=2 (other parameters as in A) and (iv) 

assuming that 𝑐𝑘 (𝑐𝑘 =
𝑠𝑘

𝜎𝑘
) follows a gamma distribution with mean = 0.5 and shape=2 (other 

parameters as in A). The discrepancy between the fitted H and the prediction based on our 

model stems from the segregation of mildly deleterious mutations at relatively high 

frequencies that decrease de fitness of diploid offspring. 
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Figure S2 Comparison of the fitted and expected 𝑐𝑛𝑢𝑐𝑙 for different genetic architectures. 

Simulations of a diallel cross using 30 haploid parents (900 diploid offspring) with 500 loci 

under selection with four different types of genetic architectures: (A) assuming that 𝜎𝑘, ℎ𝑘 

and 𝑐𝑘 are constant across loci with means respectively equal to 0.01, 0.25 and 0.5 (mutation 

rate is fixed at 10-4), (B) assuming that each 𝜎𝑘 is sampled from a gamma distribution with 

mean = 0.01 and shape=2 (other parameters as in A), (C) assuming that each ℎ𝑘 is sampled 

from a gamma distribution with mean = 0.25 and shape=2 (other parameters as in A) and (iv) 

assuming that 𝑐𝑘 (𝑐𝑘 =
𝑠𝑘

𝜎𝑘
) follows a gamma distribution with mean = 0.5 and shape=2 (other 

parameters as in A). The discrepancy between the fitted H and the prediction based on our 

model stems from the segregation of mildly deleterious mutations at relatively high 

frequencies that decrease de fitness of diploid offspring. A small number of values fell outside 
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of the displayed interval due to the effect of environmental variation and are omitted from the 

graph for clarity. 

 

3. Quantitative genetic model for the empirical estimation of 𝒄𝒏𝒖𝒄𝒍, 𝒄𝒎𝒊𝒕 and pH 

3.1. Statistical model 

For fungi, we consider homokaryons to be equivalent to haploids and heterokaryons to be 

equivalent to diploids (see main text). We index genetic effects with 𝑁𝑢𝑐𝑙 if they are nuclear 

and 𝑀𝑖𝑡 if they are mitochondrial. Our general approach is to decompose nuclear and 

mitochondrial genetic effects into effects due to loci that are shared between homokaryons 

and heterokaryons (hereafter with a 𝐻𝑜𝑚𝐻𝑒𝑡 superscript, e.g. 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 ) and effects due to 

loci specific to homokaryons (hereafter with a 𝐻𝑜𝑚𝑂𝑛𝑙𝑦 superscript, e.g. 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

) or 

heterokaryons (hereafter with a 𝐻𝑒𝑡𝑂𝑛𝑙𝑦 superscript, e.g. 𝐴𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙𝑖
′ ). We do not consider 

mitochondrial-nucleus interactions. For homokaryon fitness, we define: 

 

𝑧𝑖 = ln(𝑤𝑖) = 𝑧0 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖 + 𝜀 , 

where 𝑧𝑖 is the logarithm of the fitness of homokaryon i, 𝑧0 is the average homokaryon 

fitness, 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖 is the homokaryon mitochondrial genetic value, 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖 is the 

homokaryon nuclear genetic value and 𝜀 is the residual error. We can define: 

𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖 = 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
, 

where 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡  is the part of homokaryon mitochondrial genetic value due to loci that also 

have a fitness effect in heterokaryons, 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

, is the part of homokaryon mitochondrial 

genetic value due to loci that do not have any fitness effect in heterokaryons. Similarly, we 

have: 

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖 = 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
, 

where 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡  is the part of homokaryon nuclear genetic value due to loci that also have a 

fitness effect in heterokaryons, 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

, is the part of homokaryon nuclear genetic value 

due to loci that do not have any fitness effect in heterokaryons.  

Similarly for heterokaryons, we define: 

𝑍𝑖𝑗 = ln(𝑊𝑖𝑗) = 𝑍0 + 𝐴𝐻𝑒𝑡𝑀𝑖𝑡𝑖 + 𝐴𝐻𝑒𝑡𝑁𝑢𝑐𝑙𝑖𝑗 + 𝜀 

where 𝑍𝑖𝑗 is the logarithm of the fitness of heterokaryons formed with parental homokaryons i 

and j, 𝑍0 is the average heterokaryon fitness, 𝐴𝐻𝑒𝑡𝑀𝑖𝑡𝑖 is the heterokaryon mitochondrial 
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genetic value (only the acceptor i is providing the mitochondria), 𝐴𝐻𝑒𝑡𝑁𝑢𝑐𝑙𝑖𝑗 is the 

heterokaryon nuclear genetic value and 𝜀 is the residual error.  

We can decompose mitochondrial effects as,  

𝐴𝐻𝑒𝑡𝑀𝑖𝑡𝑖 = 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖

𝐻𝑒𝑡𝑂𝑛𝑙𝑦
, 

where 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 is the part of heterokaryon mitochondrial genetic value due to loci that also 

have a fitness effect in homokaryons, 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

, is the part of heterokaryon mitochondrial 

genetic value due to loci that do not have any fitness effect in homokaryons. Let 𝑐𝑚𝑖𝑡 be the 

ratio of the fitness effects of mutations in heterokaryons over the fitness effects of the same 

mutations in homokaryons (see Eq. 18 above), such that 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡=𝑐𝑚𝑖𝑡𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 . 

We can also define: 

𝐴𝐻𝑒𝑡𝑁𝑢𝑐𝑙𝑖𝑗 =
𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖+𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗

2
+ 𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗 , 

where 𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖 and 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗  are the acceptor and donor nuclear genetic values respectively 

and 𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗 represents the interaction between acceptor and donor nuclei (see 

Simchen and Jinks 1964 for a similar decomposition of heterokaryon genetic value). 

Let’s decompose the acceptor and donor nuclear genetic values as follows: 

𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖 = 𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖

𝐻𝑒𝑡𝑂𝑛𝑙𝑦
and 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗 = 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

,  

where 𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡  and 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡  represent the part of acceptor and donor genetic values due to 

loci that also have fitness effects in homokaryons, whereas 𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

 and 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

 represent 

the part of acceptor and donor genetic values due to loci that do not have any fitness effect in 

heterokaryons. Let 𝑐𝑛𝑢𝑐𝑙 be the ratio of the fitness effects of mutations in heterokaryons over 

the fitness effects of the same mutations in homokaryons (see Eq. 8 above), such that 

𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 =𝑐𝑛𝑢𝑐𝑙𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡  and 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝐻𝑒𝑡 =𝑐𝑛𝑢𝑐𝑙𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 . 

For the acceptor x donor interaction can be decomposed as follows: 

𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗 =  𝑝𝐻𝐷𝑖𝑗 + 𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
′ ,  

where 𝐷𝑖𝑗 is the genome-wide genetic distance between homokaryon i and j, 𝑝 =
𝜋𝑑𝑒𝑙𝑒𝑡𝑒𝑟𝑖𝑜𝑢𝑠

𝜋𝑇
 

(see Eq. (11) above for details) and 𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
′  is the residual interaction after 

accounting for genetic distance (e.g. that accounts for potential epistatic effects between the 

genome i and j). 

We can rewrite homokaryon fitness as: 

𝑧𝑖 = ln(𝑤𝑖) = 𝑧0 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+ 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

+ 𝜀                 (28) 

and heterokaryon fitness as: 
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𝑍𝑖𝑗 = 𝑍0 + 𝑐𝑚𝑖𝑡𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖

𝐻𝑒𝑡𝑂𝑛𝑙𝑦
+ 𝑐𝑛𝑢𝑐𝑙

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡

2
+

𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

+𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

2
+

𝑝𝐻𝐷𝑖𝑗 + 𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
′ +  𝜀                                                                                          (29) 

3.2. Covariance between a heterokaryon and its donor homokaryon 

We want to fit a linear model expressing the fitness of a heterokaryon as a function of the 

fitness of its donor homokaryon parent: 

𝑍𝑖𝑗 = 𝑍0 + 𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑑𝑜𝑛𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛 𝑧𝑑𝑜𝑛𝑗 +  𝜀, 

where 𝑧𝑑𝑜𝑛𝑗 refers to the phenotype of the homokaryons used as donor for heterokaryon 

synthesis, and 𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑑𝑜𝑛𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛 represents the slope of the regression of 

heterokaryon phenotype on donor homokaryon parent phenotype (Lynch and Walsh 1998, 

p538). If the resemblance between an homokaryon donor parent and its heterokaryon 

offspring is not environmentally determined:  

𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑑𝑜𝑛𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛 =
𝐶𝑜𝑣(𝑍, 𝑧𝑑𝑜𝑛)

𝑉𝑎𝑟(𝑧𝑑𝑜𝑛)
 

 

We assume that we have enough measurement replicates, so that we can ignore environmental 

error and have: 

𝑍𝑖𝑗 = 𝑍0 + 𝑐𝑚𝑖𝑡𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖

𝐻𝑒𝑡𝑂𝑛𝑙𝑦
+ 𝑐𝑛𝑢𝑐𝑙

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡

2

+
𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖

𝐻𝑒𝑡𝑂𝑛𝑙𝑦
+ 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗

𝐻𝑒𝑡𝑂𝑛𝑙𝑦

2
+ 𝑝𝐻𝐷𝑖𝑗 + 𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗

′  

And: 𝑧𝑑𝑜𝑛𝑗 = 𝑧0 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+ 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

 . 

The covariance  𝐶𝑜𝑣(𝑍, 𝑧𝑑𝑜𝑛) is only due to nuclear genes with fitness effects in both 

homokaryons and heterokaryons, so that: 

𝐶𝑜𝑣(𝑍, 𝑧𝑑𝑜𝑛) = 𝐶𝑜𝑣(𝑐𝑛𝑢𝑐𝑙

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙
𝐻𝑜𝑚𝐻𝑒𝑡

2
, 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙

𝐻𝑜𝑚𝐻𝑒𝑡 ) =
𝑐𝑛𝑢𝑐𝑙

2
𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙

𝐻𝑜𝑚𝐻𝑒𝑡 ) 

Hence, we have: 

𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑑𝑜𝑛𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛 =
𝑐𝑛𝑢𝑐𝑙

2
𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙

𝐻𝑜𝑚𝐻𝑒𝑡 )

𝑉𝑎𝑟(𝑧𝑑𝑜𝑛)
      (30) 

 

The variance, 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙
𝐻𝑜𝑚𝐻𝑒𝑡 ) represents the part of the variance among homokaryon genetic 

values determined by nuclear loci that also have an effect in heterokaryons, whereas 

𝑉𝑎𝑟(𝑧𝑑𝑜𝑛) represents the genetic variance among homokaryon donors that include both 

nuclear and mitochondrial genetic effects (variance due to environmental error is factored out, 
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as we average values over many measurement replicates). When there is no mitochondrial and 

no homokaryon-specific nuclear effects, 𝑉𝑎𝑟(𝑧𝑑𝑜𝑛) = 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙
𝐻𝑜𝑚𝐻𝑒𝑡 ), and the slope of the 

regression equals 
𝑐𝑛𝑢𝑐𝑙

2
. 

3.3. Covariance between a heterokaryon and its acceptor homokaryon 

We want to fit a linear model expressing the fitness of a heterokaryon as a function of the 

fitness of its acceptor homokaryon parent: 

𝑍𝑖𝑗 = 𝑍0 + 𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛 𝑧𝑎𝑐𝑐𝑖 +  𝜀, 

where 𝑧𝑎𝑐𝑐𝑖  refers to the phenotype of the homokaryons used as acceptor for heterokaryon 

synthesis, and 𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛  represents the slope of the regression 

of heterokaryon phenotype on donor homokaryon parent phenotype (Lynch and Walsh 1998, 

p538). If the resemblance between an homokaryon acceptor parent and its heterokaryon 

offspring is not environmentally determined:  

𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛 =
𝐶𝑜𝑣(𝑍, 𝑧𝑎𝑐𝑐)

𝑉𝑎𝑟(𝑧𝑎𝑐𝑐)
 

 

We have: 𝑧𝑎𝑐𝑐𝑖 = 𝑧0 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+ 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

 . 

The covariance  𝐶𝑜𝑣(𝑍, 𝑧𝑎𝑐𝑐) is due to mitochondrial and nuclear genes with fitness effects in 

both homokaryons and heterokaryons, so that: 

𝐶𝑜𝑣(𝑍, 𝑧𝑎𝑐𝑐) = 𝐶𝑜𝑣 (𝑐𝑚𝑖𝑡𝐴𝐻𝑜𝑚𝑀𝑖𝑡
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝑐𝑛𝑢𝑐𝑙

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙
𝐻𝑜𝑚𝐻𝑒𝑡

2
, 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙
𝐻𝑜𝑚𝐻𝑒𝑡 ) 

Hence, we have: 

𝑠𝑙𝑜𝑝𝑒ℎ𝑒𝑡𝑒𝑟𝑜𝑘𝑎𝑟𝑦𝑜𝑛−𝑎𝑐𝑐𝑒𝑝𝑡𝑜𝑟 ℎ𝑜𝑚𝑜𝑘𝑎𝑟𝑦𝑜𝑛 =
𝑐𝑚𝑖𝑡𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑀𝑖𝑡

𝐻𝑜𝑚𝐻𝑒𝑡)+
𝑐𝑛𝑢𝑐𝑙

2
𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙

𝐻𝑜𝑚𝐻𝑒𝑡 )

𝑉𝑎𝑟(𝑧𝑎𝑐𝑐)
           (31) 

 

The variance, 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑀𝑖𝑡
𝐻𝑜𝑚𝐻𝑒𝑡) and 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙

𝐻𝑜𝑚𝐻𝑒𝑡 ) respectively represent the part of the 

variance among homokaryon genetic values determined by mitochondrial and nuclear loci 

that also have an effect in heterokaryons, whereas 𝑉𝑎𝑟(𝑧𝑎𝑐𝑐) represents the genetic variance 

among acceptor homokaryons that include both nuclear and mitochondrial genetic effects 

(variance due to environmental error is factored out, as we average values over many 

measurement replicates). When there is no mitochondrial and no homokaryon-specific 

nuclear effects, the slope of the regression is the same as that of the regression on donor 

homokaryons and equals 
𝑐𝑛𝑢𝑐𝑙

2
. 

3.4. Covariance between a heterokaryon and its homokaryon mid-parent 
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We want to fit a linear model expressing the fitness of a heterokaryons as a function of the 

fitness of its homokaryon mid-parent 

𝑍𝑖𝑗 = 𝑍0 + 𝑠𝑙𝑜𝑝𝑒
𝑧𝑎𝑐𝑐𝑖+𝑧𝑑𝑜𝑛𝑗

2
+  𝜀, 

where 𝑧𝑎𝑐𝑐𝑖and 𝑧𝑑𝑜𝑛𝑗 refers to the phenotype of the homokaryons used as acceptor and donor 

for heterokaryons synthesis, and 𝑠𝑙𝑜𝑝𝑒 represents the slope of the regression of heterokaryon 

phenotype on mid-homokaryon parent phenotype (Lynch and Walsh 1998, p538). In the 

absence of maternal effects and if the resemblance between homokaryon parents and their 

heterokaryon offspring is not environmentally determined:  

𝑠𝑙𝑜𝑝𝑒 =
𝐶𝑜𝑣 (𝑍,

𝑧𝑎𝑐𝑐 + 𝑧𝑑𝑜𝑛
2 )

𝑉𝑎𝑟 (
𝑧𝑎𝑐𝑐 + 𝑧𝑑𝑜𝑛

2 )
 

 

And 𝑍𝑖𝑗 = 𝑍0 + 𝑐𝑚𝑖𝑡𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖

𝐻𝑒𝑡𝑂𝑛𝑙𝑦
+ 𝑐𝑛𝑢𝑐𝑙

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡

2
+

𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

+𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

2
+

𝑝𝐻𝐷𝑖𝑗 + 𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖×𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗
′  

𝑧𝑎𝑐𝑐𝑖 + 𝑧𝑑𝑜𝑛𝑗

2

=
𝑧0 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦 + 𝑧0 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗
𝐻𝑜𝑚𝑂𝑛𝑙𝑦 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

2
 

Genetic effects that are homokaryon- or heterokaryon-specific are independent. Hence, 

𝐶𝑜𝑣 (𝐴𝐴𝑐𝑐𝑀𝑖𝑡𝑖
𝐻𝑒𝑡𝑂𝑛𝑙𝑦

+
𝐴𝐴𝑐𝑐𝑁𝑢𝑐𝑙𝑖

𝐻𝑒𝑡𝑂𝑛𝑙𝑦
+ 𝐴𝐷𝑜𝑛𝑁𝑢𝑐𝑙𝑗

𝐻𝑒𝑡𝑂𝑛𝑙𝑦

2
,
𝑧𝑎𝑐𝑐 + 𝑧𝑑𝑜𝑛

2
) = 0 

and 𝐶𝑜𝑣 (𝑍,
𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝑂𝑛𝑙𝑦

2
) = 0 

We assume that both the residual interaction between acceptor and donor nuclei 

(𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙×𝐷𝑜𝑛𝑁𝑢𝑐𝑙
′ ) and the masking effect of deleterious mutations in heterozygotes (𝑝𝐻𝐷) 

are independent of the other effects. Hence,  

𝐶𝑜𝑣 (𝑝𝐻𝐷,
𝑧0+𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴
𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

+𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴

𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

+𝑧0+𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗
𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴

𝐻𝑜𝑚𝑀𝑖𝑡𝑗
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

+𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴

𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

2
) = 0 and 

𝐶𝑜𝑣 (𝐼𝐴𝑐𝑐𝑁𝑢𝑐𝑙×𝐷𝑜𝑛𝑁𝑢𝑐𝑙
′ ,

𝑧0+𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

+𝑧0+𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗
𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗

𝐻𝑜𝑚𝑂𝑛𝑙𝑦
+𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 +𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝑂𝑛𝑙𝑦

2
) =0 

We also assume that acceptor and donor homokaryons are chosen randomly so that their 

phenotype does not covary 𝐶𝑜𝑣(𝑧𝑎𝑐𝑐, 𝑧𝑑𝑜𝑛) = 0 

Hence,  
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𝑠𝑙𝑜𝑝𝑒

=

𝐶𝑜𝑣 (𝑐𝑚𝑖𝑡𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝑐𝑛𝑢𝑐𝑙

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡

2 ,
𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝐻𝑒𝑡

2 )

1
4 (𝑉𝑎𝑟(𝑧𝑎𝑐𝑐) + 𝑉𝑎𝑟(𝑧𝑑𝑜𝑛))

 

=

𝐶𝑜𝑣 (𝑐𝑚𝑖𝑡𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 ,

𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡

2 ) + 𝐶𝑜𝑣 (𝑐𝑛𝑢𝑐𝑙

𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡

2 ,
𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝐻𝑒𝑡

2 )

1
2

𝑉𝑎𝑟(𝑧)
 

 

=

𝑐𝑚𝑖𝑡

2 𝐶𝑜𝑣(𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 , 𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 ) + 𝑐𝑛𝑢𝑐𝑙𝐶𝑜𝑣 (
𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝐻𝑒𝑡

2 ,
𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝐻𝑒𝑡

2 )

1
2

𝑉𝑎𝑟(𝑧)
 

 

And we have: 

𝑠𝑙𝑜𝑝𝑒 =

𝑐𝑚𝑖𝑡
2 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 ) + 𝑐𝑛𝑢𝑐𝑙𝑉𝑎𝑟(
𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗
𝐻𝑜𝑚𝐻𝑒𝑡

2 )

1
2𝑉𝑎𝑟(𝑧)

 

=

𝑐𝑚𝑖𝑡
2 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑀𝑖𝑡𝑖

𝐻𝑜𝑚𝐻𝑒𝑡 ) +
𝑐𝑛𝑢𝑐𝑙

4 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑖
𝐻𝑜𝑚𝐻𝑒𝑡 + 𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙𝑗

𝐻𝑜𝑚𝐻𝑒𝑡 )

1
2𝑉𝑎𝑟(𝑧)

 

=

𝑐𝑚𝑖𝑡
2 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑀𝑖𝑡

𝐻𝑜𝑚𝐻𝑒𝑡) +
𝑐𝑛𝑢𝑐𝑙

2 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙
𝐻𝑜𝑚𝐻𝑒𝑡 )

1
2𝑉𝑎𝑟(𝑧)

 

𝑠𝑙𝑜𝑝𝑒 =
𝑐𝑚𝑖𝑡𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑀𝑖𝑡

𝐻𝑜𝑚𝐻𝑒𝑡)+𝑐𝑛𝑢𝑐𝑙𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙
𝐻𝑜𝑚𝐻𝑒𝑡 )

𝑉𝑎𝑟(𝑧)
                                          (32) 

 

The variance, 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑀𝑖𝑡
𝐻𝑜𝑚𝐻𝑒𝑡) and 𝑉𝑎𝑟(𝐴𝐻𝑜𝑚𝑁𝑢𝑐𝑙

𝐻𝑜𝑚𝐻𝑒𝑡 ) respectively represent the part of the 

variance among homokaryon genetic values determined by mitochondrial and nuclear loci 

that also have an effect in heterokaryons, whereas 𝑉𝑎𝑟(𝑧) represents the genetic variance 

among homokaryons. 

 

4. Description of the bivariate mixed model used for the estimation of 𝒄𝒏𝒖𝒄𝒍, 𝒄𝒎𝒊𝒕 

and pH 

 

To comply with our statistical model, MGR was log-transformed prior to the analyses. The 

genetic and environmental effects were partitioned using linear mixed model analyses with 
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Gaussian error distributions. Continuous predictor variables were scaled to mean of zero and 

standard deviation of one prior to the analyses (Schielzeth 2010). For the most complex (i.e. 

full) model, we used the following bivariate linear mixed model with the same structure of 

fixed and random environmental effects for homokaryons and heterokaryons, but with 

different structures of random genetic effects for homokaryons: 

𝒛 = 𝑿𝒃 + 𝒁𝒉𝒐𝒎𝒖𝒉𝒐𝒎 + 𝒁𝒉𝒐𝒎𝒎𝒊𝒕𝒖𝒉𝒐𝒎𝒎𝒊𝒕 + 𝒁𝒂𝒔𝒔𝒂𝒚𝒖𝒂𝒔𝒔𝒂𝒚 + 𝒁𝒑𝒍𝒂𝒕𝒆𝒖𝒑𝒍𝒂𝒕𝒆 + 𝜺     (33) 

and heterokaryons: 

𝒛 = 𝑿𝒃 + 𝒁𝒂𝒄𝒄𝒖𝒂𝒄𝒄 + 𝒁𝒅𝒐𝒏𝒖𝒅𝒐𝒏 + 𝒁𝒂𝒄𝒄 × 𝒅𝒐𝒏𝒖𝒂𝒄𝒄 × 𝒅𝒐𝒏 + 𝒁𝒉𝒆𝒕𝒎𝒊𝒕𝒖𝒉𝒆𝒕𝒎𝒊𝒕 + 𝒁𝒂𝒔𝒔𝒂𝒚𝒖𝒂𝒔𝒔𝒂𝒚 +

𝒁𝒑𝒍𝒂𝒕𝒆𝒖𝒑𝒍𝒂𝒕𝒆 + 𝜺                                                                              (34) 

where 𝒛 is a vector of logarithm MGR observations, 𝒃 is a vector of fixed effects, 𝒖𝒉𝒐𝒎, 𝒖𝒂𝒄𝒄 

and 𝒖𝒅𝒐𝒏 are vectors of random homokaryon, acceptor, donor nuclear genetic 

effects, 𝒖𝒂𝒄𝒄 × 𝒅𝒐𝒏 is a vector of random interactions between acceptor and donor nuclear 

genetic effects, 𝒖𝒉𝒐𝒎𝒎𝒊𝒕 and 𝒖𝒉𝒆𝒕𝒎𝒊𝒕 are vectors of random homokaryon and heterokaryon 

mitochondrial haplotype genetic effects, 𝒖𝒂𝒔𝒔𝒂𝒚 and 𝒖𝒑𝒍𝒂𝒕𝒆 are vectors of random assay and 

plate effects, 𝜺 is a vector of random errors, and 𝑿, 𝒁𝒉𝒐𝒎, 𝒁𝒂𝒄𝒄, 𝒁𝒅𝒐𝒏, 𝒁𝒂𝒄𝒄 × 𝒅𝒐𝒏, 𝒁𝒉𝒐𝒎𝒎𝒊𝒕, 

𝒁𝒉𝒆𝒕𝒎𝒊𝒕, 𝒁𝒂𝒔𝒔𝒂𝒚 and 𝒁𝒑𝒍𝒂𝒕𝒆𝒔 are incidence matrices relating the observations to the fixed and 

random effects respectively. Fixed effects in 𝒃 comprised different intrinsic fitness effects for 

heterokaryons and homokaryons (strain type factor), the genetic distance between parental 

homokaryons (set at zero for homokaryons, and at the genome-wide genetic distance between 

parental homokaryons for heterokaryons, genetic distance covariate), and the senescence 

status of the donor ("senescent" for heterokaryons descended from senescent donors, vs. "not 

senescent" for homokaryons and heterokaryons descended from non-senescent donors, donor 

senescent factor). Importantly, we assume that the senescence only affects the mean of donor 

effects (e.g. that donor effects are on average lower for senescent than for non-senescent 

donor strains), but that the genetic variance among donor effects is the same whether the 

donor strain was senescent or not. The random genetic effect 𝒖𝒂𝒄𝒄 × 𝒅𝒐𝒏 captures some effects 

that are not considered in our simple analytic model (e.g. epistasis among deleterious 

mutations). The random genetic effects 𝒖𝒉𝒐𝒎, 𝒖𝒂𝒄𝒄 and 𝒖𝒅𝒐𝒏 were assumed to follow a 

multivariate normal distribution with zero mean vector and variance-covariance matrix: 

 

𝑉 [

𝒖𝒉𝒐𝒎

𝒖𝒂𝒄𝒄

𝒖𝒅𝒐𝒏

] =
(CovNucl1: full 

covariance of nuclear 

genetic effects) 
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[
 
 
 
 𝜎ℎ𝑜𝑚

2 𝑐𝑛𝑢𝑐𝑙

2
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2 𝑐𝑛𝑢𝑐𝑙

2
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2

𝑐𝑛𝑢𝑐𝑙

2
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2 𝜎𝑎𝑐𝑐
2 c𝑛𝑢𝑐𝑙

2

4
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2

𝑐𝑛𝑢𝑐𝑙

2
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2 c𝑛𝑢𝑐𝑙
2

4
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2 𝜎𝑑𝑜𝑛
2

]
 
 
 
 

⨂ 𝑨𝟑𝟎, 

where 𝑨𝟑𝟎 represents the haploid nuclear genetic relationship matrix (all-one matrix minus 

the matrix of haploid nuclear pairwise sequence divergence) of dimension equal to the 

number of isolates (Table S3), ⨂ represents the Kronecker product, 𝜎ℎ𝑜𝑚
2 , 𝜎𝑎𝑐𝑐

2  and 𝜎𝑑𝑜𝑛
2 are 

the variances among homokaryon, acceptor and donor nuclear genetic effects respectively, 

and 
𝑐𝑛𝑢𝑐𝑙

2
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2  is the covariance between homokaryon nuclear genetic effects and 

acceptor or donor nuclear genetic effects (i.e. numerator in Eq. 12). The covariance between 

acceptor and donor nuclear genetic effects, 
c𝑛𝑢𝑐𝑙
2

4
𝜎𝐻𝑜𝑚𝐻𝑒𝑡𝑁𝑢𝑐𝑙

2 , is analogous to a covariance 

between sex-specific combining abilities in a diallel cross. This covariance actually represents 

the numerator of the slope of the regression of heterokaryon donor genetic effects over 

heterokaryon acceptor genetic effects. The random genetic effect 𝒖𝒉𝒐𝒎𝒎𝒊𝒕 and 𝒖𝒉𝒆𝒕𝒎𝒊𝒕 were 

assumed to follow a multivariate normal distribution with zero mean vector and variance-

covariance matrix: 

 

𝑉 [
𝒖𝒉𝒐𝒎𝒎𝒊𝒕 
𝒖𝒉𝒆𝒕𝒎𝒊𝒕 

] = [
𝜎ℎ𝑜𝑚𝑚𝑖𝑡

2 𝑐𝑚𝑖𝑡𝜎ℎ𝑜𝑚ℎ𝑒𝑡
2

𝑐𝑚𝑖𝑡𝜎ℎ𝑜𝑚ℎ𝑒𝑡
2 𝜎ℎ𝑒𝑡𝑚𝑖𝑡

2 ]⨂𝑨𝟏𝟏
′ ,  

(CovMit1: full covariance 

of mitochondrial genetic 

effects) 

where 𝑨𝟏𝟏
′ , represents the mitochondrial genetic relationship matrix (all-one matrix minus the 

matrix of mitochondrial pairwise sequence divergence) of dimension equal to the number of 

mitochondrial haplotypes, 𝜎ℎ𝑜𝑚𝑚𝑖𝑡
2  and 𝜎ℎ𝑒𝑡𝑚𝑖𝑡

2  are the variances of homokaryon and 

heterokaryons mitochondrial genetic effects respectively, and 𝑐𝑚𝑖𝑡𝜎ℎ𝑜𝑚ℎ𝑒𝑡
2  is the covariance 

between homokaryon and heterokaryon mitochondrial genetic effects (i.e. part of the 

numerator in Eq. 13). The assay effect accounts for environmental variation among different 

assays and plate effect accounts for environmental variation between different plates within 

the same assay. Random acceptor x donor nuclear genetic effects in 𝒖𝒂𝒄𝒄 × 𝒅𝒐𝒏, assay effects 

in 𝒖𝒂𝒔𝒔𝒂𝒚, and plate effects in 𝒖𝒑𝒍𝒂𝒕𝒆 were each assumed to be independently and normally 

distributed with a mean of zero and variance of 𝜎𝑎𝑐𝑐 × 𝑑𝑜𝑛
2 , 𝜎𝑎𝑠𝑠𝑎𝑦

2  and 𝜎𝑝𝑙𝑎𝑡𝑒
2  respectively 

(𝑉[𝒖𝒂𝒄𝒄 × 𝒅𝒐𝒏] = 𝜎𝑎𝑐𝑐 × 𝑑𝑜𝑛
2  𝑰𝟐𝟐𝟓, 𝑉[𝒖𝒂𝒔𝒔𝒂𝒚] = 𝜎𝑎𝑠𝑠𝑎𝑦

2  𝑰𝟓𝟑𝟐, and 𝑉[𝒖𝒑𝒍𝒂𝒕𝒆] = 𝜎𝑝𝑙𝑎𝑡𝑒
2  𝑰𝟏𝟑𝟗𝟓), 

where I is the identity matrix. A prerequisite for the estimation of 𝑐𝑛𝑢𝑐𝑙 and 𝑐𝑚𝑖𝑡 is that the 

covariances between nuclear genetic effects or between mitochondrial genetic effects are not 
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null. To test for this, we fit additional models with reduced variance-covariance matrices for 

both nuclear or mitochondrial genetic effects. For nuclear genetic effects, we fit two 

additional types of models: (1) In “no covariance with homokaryon nuclear genetic effects” 

type of models, we only fit the covariance between acceptor and donor genetic effects 

(𝜎𝑎𝑐𝑐𝑑𝑜𝑛
2 ), so that there is no covariance between homokaryon and either acceptor or donor 

nuclear genetic effects: 

𝑉 [

𝒖𝒉𝒐𝒎

𝒖𝒂𝒄𝒄

𝒖𝒅𝒐𝒏

] = [

𝜎ℎ𝑜𝑚
2 0 0

0 𝜎𝑎𝑐𝑐
2 𝜎𝑎𝑐𝑐𝑑𝑜𝑛

2

0 𝜎𝑎𝑐𝑐𝑑𝑜𝑛
2 𝜎𝑑𝑜𝑛

2

]⨂ 𝑨𝟑𝟎. 

(CovNucl2: covariance 

between acceptor and donor 

nuclear genetic effects only) 

 

(2) In the “no covariance of nuclear genetic effects”, all covariances between homokaryon, 

acceptor and donor genetic effects are set to zero: 

𝑉 [

𝒖𝒉𝒐𝒎

𝒖𝒂𝒄𝒄

𝒖𝒅𝒐𝒏

] = [

𝜎ℎ𝑜𝑚
2 0 0

0 𝜎𝑎𝑐𝑐
2 0

0 0 𝜎𝑑𝑜𝑛
2

]⨂ 𝑨𝟑𝟎. 

(CovNucl3: no covariance 

of nuclear genetic effects) 

For mitochondrial genetic effects, we fit one additional type of model where the covariation 

between homokaryon and heterokaryon mitochondrial genetic effects is set to zero: 

𝑉 [
𝒖𝒉𝒐𝒎𝒎𝒊𝒕 
𝒖𝒉𝒆𝒕𝒎𝒊𝒕 

] = [
𝜎ℎ𝑜𝑚𝑚𝑖𝑡

2 0

0 𝜎ℎ𝑒𝑡𝑚𝑖𝑡
2 ] ⨂𝑨𝟏𝟏

′ . 
(CovMit2: no covariance of 

mitochondrial genetic 

effects) 
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