## File S3

## Comparison of IBD parental contribution variance with Frisch and Melchinger (2007) and simplification to IBS contribution

We used an algebraic formula to predict the variance of $P_{1}$ genome contribution in doubled haploid progeny derived from F1' plants. We considered two-way crosses DH-1 (called (F1)-DH) and backcrosses DH-1 (called (BC1)-DH) and compared our results with the results given by Frisch and Melchinger (2007). We considered one chromosome of 100 cM for which Frisch and Melchinger (2007) derived a variance of parental contribution of 0.1419 for (F1)-DH and 0.0945 for (BC1)-DH. We varied the number of loci $p$ used in our approach and for each, we ran ten independent samplings of loci. We observed that the results from our approach converged with increasing number of loci to the solution given by Frisch and Melchinger (2007) (Figure 1 S3).


Figure 1 S3 Average parental genome contribution variance (black dots) for (BC1)-DH (left) and (F1)-DH (right) from ten simulation replications ( $+/-$ standard deviation represented by black vertical lines) with different number of considered loci. Red dotted line shows the results given by Frisch and Melchinger (2007).

In cases where the origin of the allele is not of interest and an identical by state (IBS) similarity between progeny and parental lines is sufficient, the multi-allelic coding can be simplified to a biallelic coding. This reduces the size of the covariance matrix from ( $4 p \times 4 p$ ) to ( $p \times p$ ), with $p$ being the number of loci considered. For this, let us define the genotyping matrix of parental lines in biallelic coding:

$$
\boldsymbol{X}_{I B S}=\operatorname{diag}\left(\boldsymbol{X}_{\text {Parental }}\right)=\left(\boldsymbol{x}_{1} \boldsymbol{x}_{2} \boldsymbol{x}_{3} \boldsymbol{x}_{4}\right)^{\prime}
$$

where, $\boldsymbol{X}_{I B S}$ is a (4xp)-dimensional matrix of genotypes. The ( $p \times 4$ )-dimensional matrix of global parental contribution marker effects for each of the four parents can be defined as:

$$
\boldsymbol{\beta}_{I B S}=\frac{1}{2 p} \boldsymbol{X}_{I B S}^{\prime}
$$

where, $\forall i \in[1 ; 4] \boldsymbol{\beta}_{I B S}(., i)$ is the $p$-dimensional vector of marker effect to follow the IBS contribution of parent $i$ and $p$ is the total number of loci considered.

We denote the ( $N \times p$ )-dimensional genotyping matrix of $N$ doubled haploid (DH) progeny as $\boldsymbol{X}_{I B S-P r o g e n y}$ with element $\boldsymbol{X}_{I B S-P r o g e n y}(j, l), \forall j \in[1, N], l \in[1, p]$ the genotype of progeny $j$ at locus $l$ coded as $-1,1$ for the genotypes aa, AA, respectively. It results in the following ( $N \times 4$ )dimensional matrix of parental IBS contribution to progeny:

$$
C_{I B S}=X_{I B S-\text { Progeny }} \boldsymbol{\beta}_{I B S}+\frac{1}{2} \mathbf{1}_{N} \mathbf{1}_{4}^{\prime}
$$

where, $\forall j \in[1 ; N], \forall i \in[1 ; 4], \boldsymbol{C}_{I B S}(j, i)$ is the parental line $i$ contribution to progeny line $j$.

## Literature cited

Frisch M., and A. E. Melchinger, 2007 Variance of the Parental Genome Contribution to Inbred Lines Derived From Biparental Crosses. Genetics 176: 477-488.

