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Supporting Information for: “polyRAD: Genotype calling 
with uncertainty from sequencing data in polyploids and 
diploids” 
Methods 
Algorithm initialization 
Allele frequencies are used in Eqns. 1-2 for estimating genotype likelihoods, yet are not known if 
no genotype estimation has yet been performed.  Therefore, the polyRAD algorithms are 
initialized using a rough estimation of allele frequencies based on read depth.  For every 
individual j and allele l, a depth ratio dr is calculated using allelic read depths a and b as defined 
in the main manuscript.  When ajl and bjl are both zero, drjl is treated as missing data. 

Eqn 5:  𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗 = 𝑎𝑎𝑗𝑗𝑗𝑗
𝑎𝑎𝑗𝑗𝑗𝑗+𝑏𝑏𝑗𝑗𝑗𝑗

 

For the mapping population and HWE pipelines, these depth ratios are then used for estimating 
allele frequencies, where nind is the number of individuals with reads: 

Eqn. 6:  𝑝𝑝𝑙𝑙 =  
∑ 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗=1

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
 

For the population structure pipeline, the matrix of depth ratios (individual*allele across all loci) 
is subjected to probabilistic principal components analysis using the R package pcaMethods 
(Stacklies et al. 2007).  The first several principal components, up to an arbitrary threshold for 
the rate of change in their R2 value, are retained.  The depth ratios for each allele are then 
regressed on the retained principal components, and the fitted values are treated as local allele 
frequencies for the population of origin of each individual.  These local allele frequencies are 
equivalent to the truncated singular value decomposition of the dr matrix.  Mean local allele 
frequencies across all individuals are then estimated in order to be used in Eqn. 1. 

Mapping populations 
Any number of generations of backcrossing (genbc), intermating (genint), and self-fertilization 
(genself) can be specified.  A donor and recurrent parent are specified, although these are 
interchangeable when genbc = 0.  Where kmaxD is the maximum possible ploidy of the donor 
parent, kmaxR is the maximum possible ploidy of the recurrent parent, the expected allele 
frequencies in the population are: 

Eqn. 7:  �𝑚𝑚
𝑛𝑛
�
𝑚𝑚=0

𝑛𝑛
 where 𝑛𝑛 = (𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏𝑏𝑏 + 1) ∗ (𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

Allele frequencies estimated in Eqn. 6 are then rounded to the nearest expected allele frequency, 
and those frequencies are used for estimating genotype likelihoods in Eqns. 1-2. 

For each possible ploidy, the genotypes with the highest likelihoods are identified for the parents.  
Where possible, parental genotypes are corrected if they do not match the corresponding progeny 
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allele frequency.  For each possible ploidy combination, taking into account inheritance mode, 
gametes are simulated for each generation of backcrossing, intermating, and self-fertilization in 
order to estimate genotype prior probabilities (P(G)) for the progeny.  Genotype posterior 
probabilities are then estimated using Eqn. 3. 

Optionally, information from linked markers can be incorporated at this point in the pipeline.  
For a given allele, alleles from loci within a user-defined distance in basepairs are tested for 
linkage by estimating Pearson’s correlation coefficient between weighted mean genotypes (Eqn. 
4).  If the correlation coefficient (r) is above a certain threshold (0.5 by default, and required to 
be positive), the markers are considered to be linked.  If both alleles only have two possible 
genotypes segregating in the population, genotype priors for allele l based on genotype posterior 
probabilities for allele m are: 

Eqn. 8:  𝑃𝑃�𝐺𝐺𝑙𝑙�𝑃𝑃(𝐺𝐺𝑚𝑚|𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚)� = 𝑟𝑟2 ∗ 𝑃𝑃(𝐺𝐺𝑚𝑚|𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚) + (1 − 𝑟𝑟2)/2  

Given that r2 represents the proportion of variance of allele l explained by allele m, it is used in 
Eqn. 8 as a mixing weight to determine how much influence the posterior genotype probabilities 
for allele m have on the prior genotype probabilities for allele l. 

Otherwise, if either allele has more than two possible genotypes, it is unknown whether both 
alleles are linked in all parental haplotypes.  In that case, the posterior probabilities for all 
genotypes for allele l are regressed on the posterior probabilities for all genotypes for allele m, 
and the fitted values are treated as priors for allele l.  Although this method is somewhat ad hoc, 
it enables the use of linked alleles for predicting genotypes when linkage phase is unknown.  We 
found that including this method reduced genotyping error by 4% in our Miscanthus sinensis F1 
population, as compared to only utilizing linkage between alleles where only two genotypes were 
possible (data not shown).  

Priors based on linkage across all alleles linked to a given allele are then obtained by 
multiplication, where M is the total number of linked alleles and i is a particular allele copy 
number (genotype): 

Eqn. 9:  𝑃𝑃�𝐺𝐺𝑖𝑖𝑖𝑖�𝑃𝑃(𝐺𝐺|𝑎𝑎, 𝑏𝑏)� =
∏ 𝑃𝑃�𝐺𝐺𝑖𝑖𝑖𝑖�𝑃𝑃(𝐺𝐺𝑚𝑚|𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚)�𝑀𝑀
𝑚𝑚=1

∑ ∏ 𝑃𝑃�𝐺𝐺𝑖𝑖𝑖𝑖�𝑃𝑃(𝐺𝐺𝑚𝑚|𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚)�𝑀𝑀
𝑚𝑚=1

𝑘𝑘
𝑖𝑖=0

 

Multiplication is used in Eqn. 9 because it causes alleles that are more tightly linked to a given 
allele, and/or have higher read depth, to have a larger influence on priors than alleles that are less 
tightly linked and/or have lower read depth.  Additionally, if multiple linked alleles are in 
agreement about which allele copy number is most probable at a given allele, the prior 
probability of that allele copy number will be higher than if it were estimated from a single 
linked allele. 

Genotype posterior probabilities are then re-estimated as: 

Eqn. 10:  𝑃𝑃�𝐺𝐺𝑖𝑖𝑖𝑖�𝑎𝑎𝑙𝑙 , 𝑏𝑏𝑙𝑙,𝑃𝑃(𝐺𝐺|𝑎𝑎, 𝑏𝑏)� =
𝐿𝐿�𝑎𝑎𝑙𝑙, 𝑏𝑏𝑙𝑙�𝐺𝐺𝑖𝑖�∗𝑃𝑃�𝐺𝐺𝑖𝑖𝑖𝑖�𝑃𝑃(𝐺𝐺|𝑎𝑎, 𝑏𝑏)�∗𝑃𝑃(𝐺𝐺𝑖𝑖𝑖𝑖)

∑ 𝐿𝐿�𝑎𝑎𝑙𝑙, 𝑏𝑏𝑙𝑙�𝐺𝐺𝑖𝑖�∗𝑃𝑃�𝐺𝐺𝑖𝑖𝑖𝑖�𝑃𝑃(𝐺𝐺|𝑎𝑎, 𝑏𝑏)�∗𝑃𝑃(𝐺𝐺𝑖𝑖𝑖𝑖)𝑘𝑘
𝑖𝑖=0
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Hardy-Weinberg equilibrium and inbreeding without population structure 
For autopolyploids, genotype priors under HWE are: 

Eqn. 11: 𝑃𝑃(𝐺𝐺𝑖𝑖𝑖𝑖) = �𝑘𝑘𝑖𝑖� ∗ 𝑝𝑝𝑙𝑙
𝑖𝑖 ∗ (1 − 𝑝𝑝𝑙𝑙)𝑘𝑘−𝑖𝑖 

If the self-fertilization rate, s, is above zero, priors are adjusted according to Equation 6 of de 
Silva et al. (2005): 

Eqn. 12: 𝑃𝑃�𝐺𝐺𝑙𝑙,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� = (1 − 𝑠𝑠)(𝑰𝑰 − 𝑠𝑠𝑨𝑨)−1𝑃𝑃(𝐺𝐺𝑙𝑙) 

where I is the identity matrix.  A is a square matrix, with parental genotypes in columns and 
progeny genotypes in rows, indicating the frequency of progeny genotypes produced by the self-
fertilization of each possible parental genotype [AT in de Silva et al. (2005)]. 

For allopolyploids, it is assumed that each allele only segregates in one subgenome.  If nsubgen 
is the number of subgenomes, the allele frequency within that subgenome s is: 

Eqn. 13:  𝑝𝑝𝑙𝑙𝑙𝑙 = (𝑝𝑝𝑙𝑙 mod 1
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

) ∗ 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Genotype priors within subgenomes are then estimated as in Eqns. 11 and 12.  The number of 
subgenomes that are fixed for allele l are estimated as 

 Eqn. 14: 𝑝𝑝𝑙𝑙 div 1
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  

in order to obtain overall priors for allele copy number.  Genotype posterior probabilities are then 
estimated as in Eqn. 3.  Posterior mean genotypes are estimated as in Eqn. 4.  Allele frequencies 
are then re-estimated from posterior mean genotypes, where nind is the total number of 
individuals: 

Eqn. 15:  𝑝𝑝𝑙𝑙 =
∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗=1

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
 

Re-estimation of genotype priors, genotype posterior probabilities, posterior mean genotypes, 
and allele frequencies then continues until allele frequencies converge. 

Optionally, after the first round of posterior probability estimation, linkage between alleles at 
nearby loci can be estimated using Pearson’s correlation coefficient between posterior mean 
genotypes as with mapping populations, with a default minimum correlation coefficient of 0.2.  
Using the same rationale as for Eqn. 8, priors based on genotype posterior probabilities at a 
linked allele are estimated as: 

Eqn. 16: 𝑃𝑃�𝐺𝐺𝑖𝑖𝑖𝑖�𝑃𝑃(𝐺𝐺𝑖𝑖𝑖𝑖|𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚)� = 𝑟𝑟2 ∗ 𝑃𝑃(𝐺𝐺𝑖𝑖𝑖𝑖|𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚) + (1 − 𝑟𝑟2)/(𝑘𝑘 + 1)  

Priors based on linkage across all alleles are estimated as in Eqn. 9, and posterior genotype 
probabilities are re-estimated as in Eqn. 10.  Linkage is not re-estimated in subsequent iterations, 
in order to prevent overestimation, but genotype prior and posterior probabilties based on linkage 
are re-estimated in each iteration. 
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Population structure 
The local allele frequencies estimated from PCA as described in “Algorithm initialization” are 
used for estimating local genotype frequencies under HWE or inbreeding as in Eqns. 11 and 12 
in order to set genotype priors individually for each sample in the dataset.  Genotype likelihoods, 
posterior probabilities, and posterior mean genotypes are then estimated according to Eqns. 2, 3, 
and 4, respectively.  A new PCA is performed using posterior mean genotypes, and posterior 
mean genotypes are regressed on the PC axes in order to re-estimate local allele frequencies; the 
estimated local allele frequencies are equivalent to a truncated singular value decomposition of 
the pmg matrix, divided by the ploidy.  Allele frequencies, genotype priors, genotype likelihoods, 
genotype posterior probabilities, posterior mean genotypes, and PCA are iteratively re-calculated 
until allele frequencies converge.  Optionally, after the first round, linkage between alleles at 
nearby loci can be estimated.  In order to estimate linkage disequilibrium that is not already 
explained by population structure, posterior mean genotypes are regressed on the PCA axes and 
the residuals are taken.  Pearson’s correlation coefficient is then estimated between these 
residuals and the weighted mean genotypes of nearby alleles.  In all subsequent iterations, 
genotype priors based on linked alleles are estimated using Eqns. 16 and 9, then genotype 
posterior probabilities are estimated using Eqn. 10. 

Multiple inheritance modes 
When multiple possible inheritance modes are specified, genotype priors, likelihoods, and 
posterior probabilities are estimated for all inheritance modes.  For each inheritance mode h, 
expected genotype frequencies across the whole dataset are taken from the genotype priors based 
on population parameters (i.e. not from the genotype priors based on linkage).  Actual genotype 
counts are then estimated using genotype likelihoods: 

Eqn. 17:  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙ℎ = ∑
𝐿𝐿�𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑏𝑏𝑗𝑗𝑗𝑗�𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖ℎ�

∑ 𝐿𝐿�𝑎𝑎𝑗𝑗𝑗𝑗 , 𝑏𝑏𝑗𝑗𝑗𝑗�𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖ℎ�
𝑘𝑘ℎ
𝑖𝑖=0

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗=1  

A pseudo-chi-squared statistic is then estimated for each allele and inheritance mode. 

Eqn. 18:  𝜒𝜒𝑙𝑙ℎ2 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙−𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑃𝑃(𝐺𝐺𝑖𝑖𝑖𝑖)�
2

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∗𝑃𝑃(𝐺𝐺𝑖𝑖𝑖𝑖)
 

The pseudo-chi-squared statistic increases with the size of the deviation of the observed 
genotype frequencies from the expected genotype frequencies.  Therefore, a larger value for χ2

lh 
indicates a smaller likelihood that the inheritance mode is correct. 

During pipeline iteration, and by default for the final output, posterior mean genotypes (Eqn. 3) 
are also weighted across the inverse of the pseudo-chi-squared values. 

Eqn. 19:  𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙 = ∑ �𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙ℎ ∗
1 𝜒𝜒𝑙𝑙ℎ

2⁄
∑ 1 𝜒𝜒𝑙𝑙ℎ

2⁄ℎ
�ℎ  



5 
 

Results 
Additional testing 
To test polyRAD in a self-fertilizing diploid species with high marker density, SNP genotypes 
from 1179 Glycine soja (wild soybean) accessions were obtained from https://soybase.org/snps/ 
(Song et al. 2015).  Chromosome 18, with 2957 SNPs, was selected for analysis and used for 
simulating RAD-seq data as had been done with Miscanthus and potato.  For genotypes with > 0 
reads, the lowest error was observed by using the GATK or diseq method of EBG, or by using 
any polyRAD method with an assumed selfing rate of 0.95 and linkage disequilibrium excluded 
from the model (Fig. S1A).  When the assumed selfing rate was zero, accuracy of polyRAD was 
improved by incorporating population structure and linkage disequilibrium into the model, 
although polyRAD was less accurate than GATK or diseq due to miscalling homozygotes as 
heterozygotes (Fig. S1A).  For genotypes with zero reads, the lowest error was observed using 
either rrBLUP or continuous genotypes output by polyRAD with population structure and 
linkage disequilibrium included in the model (Fig. S1B).  Although assumed rate of self-
fertilization had a large impact on polyRAD genotyping accuracy for genotypes with > 0 reads 
(Fig. S1A), it had little to no impact on polyRAD genotyping accuracy for genotypes with zero 
reads (Fig. S1B). 

To simulate a self-fertilizing allohexaploid species similar to wheat, the same 2957 SNPs across 
1179 G. soja accessions were used, and were treated as the genotypes within one subgenome, 
where the other two subgenomes were assumed to be fixed for the reference allele.  RAD-seq 
read depth was simulated as before, but with scale = 15 rather than scale = 5 in order to get 
higher read depth.  The EBG GATK method was tested, but not the EBG HWE or EBG diseq 
methods because they assume autopolyploidy.  The EBG “alloSNP” model, which only allows 
two subgenomes, was run with subgenome 1 treated as tetraploid with all allele frequencies as 
zero, and subgenome 2 as diploid with unknown allele frequencies. polyRAD was run with an 
allohexaploid model (three diploid subgenomes) and an assumed self-fertilization rate of 0.95.  
Error (RMSE) was considerably lower across all read depths using polyRAD as compared to the 
GATK method and fitPoly, and somewhat lower as compared to EBG alloSNP and updog (Fig. 
S2A).  On average, the polyRAD model with population structure, linkage disequilibrium, and 
continuous output gave a 70.3% (SE 0.3%) lower error rate than the GATK method, a 74.4% (SE 
0.3%) lower error rate than fitPoly, a 62.3% (SE 0.3%) lower error rate than updog with 
continuous genotypes, and a 54.6% (SE 0.3%) lower error rate than the EBG alloSNP model on 
genotypes with more than zero reads.  Accuracy of polyRAD was improved by assuming both 
population structure and linkage disequilibrium, both for genotypes with zero reads and > 0 reads 
(Fig. S2).  Genotype imputation with rrBLUP using genotypes from the GATK method was 
similarly accurate to continuous genotype calls from polyRAD without assuming population 
structure or linkage disequilibrium, and considerably less accurate than polyRAD when 
population structure and linkage disequilibrium were assumed (Fig. S2B). 

To test polyRAD in a domesticated but outcrossing species, we used data from 3650 SNPs across 
96 diploid apple cultivars, available at https://www.rosaceae.org/ (Chagné et al. 2012), for 
simulation of RAD-seq data as was done in Miscanthus.  polyRAD was similarly accurate to the 

https://soybase.org/snps/
https://www.rosaceae.org/
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EBG HWE and diseq models and updog, and slightly more accurate than the EBG GATK model 
(Fig. S3A).  Modeling population structure actually reduced accuracy of polyRAD in the apple 
dataset, perhaps due to the small number of accessions included in the analysis (Fig. S3).  
Linkage disequilibrium, however, improved genotyping accuracy (Fig. S3).  For genotypes with 
zero reads, rrBLUP was the most accurate and LinkImpute the least accurate, with continuous 
output from polyRAD being similarly accurate to rrBLUP (Fig. S3B). 

To test polyRAD in a domesticated autotetraploid species, we used data from 3762 SNPs across 
221 potato cultivars, available at http://solcap.msu.edu/potato_infinium.shtml (Hamilton et al. 
2011), for simulation of RAD-seq data as was done in Miscanthus.  All polyRAD methods 
performed similarly to or slightly better than the EBG HWE and diseq methods, rrBLUP, and 
updog, and substantially better than the GATK or fitPoly method (Fig. S4).  For genotypes with 
more than zero reads, using the polyRAD model with population structure, linkage 
disequilibrium, and continuous output, RMSE was reduced by 39.5% (SE 0.1%) with respect to 
the GATK method, 41.7% (SE 0.2%) with respect to fitPoly, 21.1% (SE 0.1%) with respect to 
the EBG “diseq” method, 18.3% (SE 0.2%) with respect to the EBG HWE method, and 9.7% 
(SE 0.4%) with respect to updog. 
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Figures 
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Fig. S1.  Genotyping error of EBG, fitPoly, updog, polyRAD, LinkImpute, and rrBLUP in a 
diversity panel of 1179 diploid Glycine soja accessions.  The benefits of incorporating 
population structure, linkage disequilibrium, and self-fertilization into the genotyping model and 
using continuous rather than discrete genotypes are illustrated.  Genotypes were coded on a scale 
of 0 to 2.  Root mean squared error (RMSE) was calculated between actual genotypes and 
genotypes ascertained from simulated RAD-seq reads at 2957 SNP markers on chromosome 18 
(lower RMSE = higher accuracy). Each point represents one SNP. Median read depth is 
indicated by color, including genotypes with zero reads. The RMSE for continuous genotypes 
output by the polyRAD PopStruct LD method is shown on the x-axis, and the RMSE of other 
methods and types of genotypes (continuous or discrete) is shown on the y-axis.  The dashed line 
indicates the ordinary least-squares regression with slope and intercept estimates, with standard 
errors.  The “norm” model was used with updog. (A) RMSE calculated using only genotypes 
with more than zero reads. (B) RMSE calculated using only genotypes with zero reads, by 
genotyping or imputation method and genotype type.  
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Fig. S2.  Genotyping error of polyRAD, EBG, and rrBLUP on a diversity panel of a simulated 
allohexaploid species, generated from diploid SNP data from 1179 Glycine soja accessions using 
2957 markers on chromosome 18.  Two out of the three subgenomes were simulated as being 
fixed for the reference allele.  The benefits of including inheritance mode, population structure, 
and linkage disequilibrium in the model are illustrated.  polyRAD was run assuming a self-
fertilization rate of 0.95.  Root mean squared error (RMSE) was calculated between actual 
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genotypes (scored on a scale of 0 to 6) and genotypes ascertained from simulated RAD-seq 
reads.  Each point represents one SNP. Median read depth is indicated by color, including 
genotypes with zero reads. The RMSE for continuous genotypes output by the polyRAD 
PopStruct LD method is shown on the x-axis, and the RMSE of other methods and types of 
genotypes (continuous or discrete) is shown on the y-axis.  The dashed line indicates the ordinary 
least-squares regression with slope and intercept estimates, with standard errors.  The “norm” 
model was used with updog.  LinkImpute was not used because it was only designed for diploid 
genotypes.  (A) RMSE calculated using only genotypes with more than zero reads. (B) RMSE 
calculated using only genotypes with zero reads, by genotyping or imputation method and 
genotype type.  
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Fig. S3.  Genotyping error of EBG, fitPoly, updog, polyRAD, LinkImpute, and rrBLUP in a 
diversity panel of 96 diploid apple cultivars.  The benefits of incorporating linkage 
disequilibrium into the genotyping model and using continuous rather than discrete genotypes 
are illustrated.  Genotypes were coded on a scale of 0 to 2.  Root mean squared error (RMSE) 
was calculated between actual genotypes and genotypes ascertained from simulated RAD-seq 
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reads at 3650 SNP markers (lower RMSE = higher accuracy). Each point represents one SNP. 
Median read depth is indicated by color, including genotypes with zero reads. The RMSE for 
continuous genotypes output by the polyRAD PopStruct LD method is shown on the x-axis, and 
the RMSE of other methods and types of genotypes (continuous or discrete) is shown on the y-
axis.  The dashed line indicates the ordinary least-squares regression with slope and intercept 
estimates, with standard errors.  The “norm” model was used with updog.  (A) RMSE calculated 
using only genotypes with more than zero reads. (B) RMSE calculated using only genotypes 
with zero reads, by genotyping or imputation method and genotype type.  
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Fig. S4.  Genotyping error of EBG, fitPoly, updog, polyRAD, and rrBLUP in a diversity panel of 
221 tetraploid potato cultivars.  The benefits of incorporating population structure into the 
genotyping model and using continuous rather than discrete genotypes are illustrated.  Genotypes 
were coded on a scale of 0 to 4.  Root mean squared error (RMSE) was calculated between 
actual genotypes and genotypes ascertained from simulated RAD-seq reads at 3762 SNP markers 
(lower RMSE = higher accuracy). Each point represents one SNP. Median read depth is 
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indicated by color, including genotypes with zero reads. The RMSE for continuous genotypes 
output by the polyRAD PopStruct LD method is shown on the x-axis, and the RMSE of other 
methods and types of genotypes (continuous or discrete) is shown on the y-axis.  The dashed line 
indicates the ordinary least-squares regression with slope and intercept estimates, with standard 
errors.  The “norm” model was used with updog.  LinkImpute was not used because it was only 
designed for diploid genotypes.  (A) RMSE calculated using only genotypes with more than zero 
reads. (B) RMSE calculated using only genotypes with zero reads, by genotyping or imputation 
method and genotype type.  
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