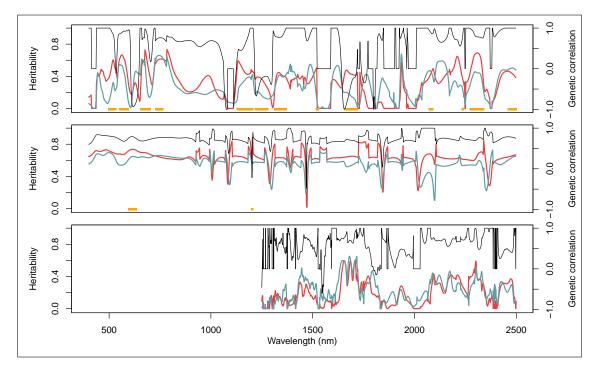

## Supplementary figures and tables for "Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar"


Renaud Rincent, Jean-Paul Charpentier, Patricia Faivre-Rampant, Etienne Paux, Jacques Le Gouis, Catherine Bastien, Vincent Segura\*

Correspondence: \*vincent.segura@inra.fr

- Supplementary figure 1: Illustration of the data used to train the GS and PS prediction models in the cross-validations corresponding to scenarios S1 and S2.
- Supplementary figure 2: Genomic heritability (color) and genetic correlation (black) along spectra collected on winter wheat leaves (a), winter wheat grains (b) and poplar wood (c).
- Supplementary table 1: Broad-sense heritabilities of the adjusted means.
- Supplementary table 2: Increase of expected genetic gain (%) by using PS instead of GS for wheat.
- Supplementary table 3: Increase of expected genetic gain (%) by using PS instead of GS for poplar.
- Supplementary table 4: Correlations of traits between S1 and S2 environments.



Supplementary Figure 1: Illustration of the data used to train the GS and PS prediction models in the cross-validations corresponding to scenarios S1 and S2.



Supplementary Figure 2: Genomic heritability (color) and genetic correlation (black) along spectra collected on winter wheat leaves (a), winter wheat grains (b) and poplar wood (c). The genotypes were grown under two environmental conditions, unfavorable (red) and favorable (blue). The wavelengths at which absorbance is associated with at least one SNP having a major effect ( $R^2$  higher or equal to 10%) are indicated with orange dots at the bottom of each graph.

| <u> </u> | T /:             | v    |           | <u> </u>         | TD 1/1 /1C          | m •             | TT '/ 1 'l'/ |
|----------|------------------|------|-----------|------------------|---------------------|-----------------|--------------|
| Species  | Location         | Year | Treatment | Code environment | Trait identifier    | Trait name      | Heritability |
| Wheat    | Clermont-Ferrand | 2016 | Irrigated | IRR              | HD                  | Heading date    | 0.94         |
| Wheat    | Clermont-Ferrand | 2016 | Irrigated | IRR              | GY                  | Grain yield     | 0.78         |
| Wheat    | Clermont-Ferrand | 2016 | Drought   | DRY              | HD                  | Heading date    | 0.94         |
| Wheat    | Clermont-Ferrand | 2016 | Drought   | DRY              | GY                  | Grain yield     | 0.75         |
| Wheat    | Estrée-Mons      | 2012 | N+        | Mon12N+          | HD                  | Heading date    | 0.97         |
| Wheat    | Estrée-Mons      | 2012 | N+        | Mon12N+          | GY                  | Grain yield     | 0.81         |
| Wheat    | Estrée-Mons      | 2012 | N-        | Mon12N-          | HD                  | Heading date    | 0.96         |
| Wheat    | Estrée-Mons      | 2012 | N-        | Mon12N-          | GY                  | Grain yield     | 0.83         |
| Wheat    | Estrée-Mons      | 2013 | N+        | Mon13N+          | HD                  | Heading date    | 0.98         |
| Wheat    | Estrée-Mons      | 2013 | N+        | Mon13N+          | GY                  | Grain yield     | 0.85         |
| Wheat    | Estrée-Mons      | 2013 | N-        | Mon13N-          | HD                  | Heading date    | 0.99         |
| Wheat    | Estrée-Mons      | 2013 | N-        | Mon13N-          | GY                  | Grain yield     | 0.86         |
| Wheat    | Clermont-Ferrand | 2013 | N+        | Cle13N+          | HD                  | Heading date    | 0.98         |
| Wheat    | Clermont-Ferrand | 2013 | N+        | Cle13N+          | GY                  | Grain yield     | 0.86         |
| Wheat    | Clermont-Ferrand | 2013 | N-        | Cle13N-          | HD                  | Heading date    | 0.90         |
| Wheat    | Clermont-Ferrand | 2013 | N-        | Cle13N-          | GY                  | Grain yield     | 0.88         |
| Poplar   | Orléans          | 2011 |           | ORL              | $\operatorname{HT}$ | Height          | 0.88         |
| Poplar   | Orléans          | 2011 |           | ORL              | CIRC                | Circumference   | 0.86         |
| Poplar   | Orléans          | 2009 |           | ORL              | $_{\mathrm{BF}}$    | Bud flush       | 0.96         |
| Poplar   | Orléans          | 2009 |           | ORL              | BS                  | Bud set         | 0.97         |
| Poplar   | Orléans          | 2009 |           | ORL              | RUST                | Rust resistance | 0.89         |
| Poplar   | Savigliano       | 2010 |           | SAV              | CIRC                | Circumference   | 0.92         |
| Poplar   | Savigliano       | 2010 |           | SAV              | $_{\mathrm{BF}}$    | Bud flush       | 0.90         |
| Poplar   | Savigliano       | 2010 |           | SAV              | BS                  | Bud set         | 0.92         |

Supplementary Table 1: Broad-sense heritabilities of the adjusted means

Supplementary Table 2: Increase of expected genetic gain (%) by using PS instead of GS for wheat. The expected genetic gain of PS and GS was estimated with the estimated heritabilities, the costs that we experienced ( $3 \in$ and  $35 \in$ for PS and GS, respectively) and the predictive abilities obtained in cross-validation in scenarios S1 and S2. For each combination of scenario, trait, and NIRS data considered (tissue and environment), the increase of expected genetic gain of PS was estimated with the best performing GS model as a reference.

|        | S1     |        |        |        |     | S2 |  |
|--------|--------|--------|--------|--------|-----|----|--|
|        | GY-IRR | GY-DRY | HD-IRR | HD-DRY | GY  | HD |  |
| max    | 94     | 222    | 121    | 127    | 81  | 98 |  |
| $\min$ | -2     | 113    | 80     | 106    | -10 | 60 |  |

Supplementary Table 3: Increase of expected genetic gain (%) by using PS instead of GS for poplar. The expected genetic gain of PS and GS was estimated with the estimated heritabilities, the costs that we experienced ( $2.5 \in$ and  $50 \in$ for PS and GS, respectively) and the predictive abilities obtained in cross-validation in scenarios S1 and S2. For each combination of scenario and trait, the increase of expected genetic gain of PS was estimated with the best performing GS model as a reference.

| Trait    | S1  | S2  |
|----------|-----|-----|
| HT-ORL   | 89  | 46  |
| CIRC-ORL | 93  | 29  |
| CIRC-SAV | 72  | -2  |
| BF-ORL   | -66 | -24 |
| BF-SAV   | -29 | -78 |
| BS-ORL   | 18  | -2  |
| BS-SAV   | -6  | 25  |
| RUST-ORL | 21  | -10 |

| Species | Trait | S1 environment | t S2 environment |         |         |         |         |         |
|---------|-------|----------------|------------------|---------|---------|---------|---------|---------|
|         |       |                | Cle13N+          | Cle13N- | Mon12N+ | Mon12N- | Mon13N+ | Mon13N- |
| Wheat   | GY    | IRR            | 0.40             | 0.40    | 0.26    | 0.16    | 0.32    | 0.26    |
| Wheat   | GY    | DRY            | 0.36             | 0.30    | 0.31    | 0.31    | 0.35    | 0.38    |
| Wheat   | HD    | IRR            | 0.84             | 0.84    | 0.85    | 0.86    | 0.87    | 0.87    |
| Wheat   | HD    | DRY            | 0.84             | 0.84    | 0.88    | 0.87    | 0.86    | 0.86    |
|         |       |                | SAV              |         |         |         |         |         |
| Poplar  | CIRC  | ORL            | 0.57             |         |         |         |         |         |
| Poplar  | BF    | ORL            | 0.85             |         |         |         |         |         |
| Poplar  | BS    | ORL            | 0.74             |         |         |         |         |         |

Supplementary Table 4: Correlations of traits between S1 and S2 environments.