Supporting Information for Raghavan et al. Incompatibilities in Mismatch Repair Genes MLH1-PMS1 Contribute to a Wide Range of Mutation Rates in Human Isolates of Baker's Yeast. DOI: 10.1534/genetics.118.301550

Figure S1 Incompatibility involving the MLH1 and PMS1 MMR genes. We proposed a model for an incompatibility involving MLH1 and PMS1 (Heck et al. 2006). It is based on the hypothesis that ancestral isolates bearing MLH1 Gly 761 and PMS1 Arg 818/822 acquired neutral and beneficial mutations that lead to derived S288c (purple Asp 761, Arg 818/822) and SK1 (green, Gly 761, Lys 818/822) group isolates. Mating between the derived isolates, supported by genetic recombination data presented in Heck et al. (2006), yields an incompatible combination (MLH1 Asp 761, PMS1 Lys 818/822) that displays negative epistasis, as shown by a mutator phenotype. Sequences of MLH1 and PMS1 genes from a worldwide collection (Peter et al. 2018) are shown according to their amino acid residues 761 (G or D) in MLH1 and 818 (R or K) in PMS1 (Bui et al. 2017). Only those homozygous for MLH1 and PMS1 sequences are shown. Adapted from Bui et al. (2017).

Figure S2 DNA sequence, as shown by chromatogram traces, of the MLH1 incompatibility site (bp 2282, Gly or Asp at amino acid 761) in the indicated isolates and spore clones.

Figure S3 Efficiency of plating of strains transformed with pEAA611, comparing growth on clon-NAT and clon-NAT + G418 plates. Representative images of EAY1369, EAY1370, YJM521, YJS5845 and YJS5885 isolates and YJS5885 spore clones are shown.

Figure S4 Sequencing analysis of G418 resistant revertants and sensitive control colonies. The homopolymeric A-runs in isolates and spore clones transformed with pEAA613
were sequenced (Materials and Method). The sequencing data from G418 resistant (top) and sensitive (bottom) colonies are presented. Only G418 resistant colonies displayed A_{14} to A_{13} frameshift mutations.

Figure S5 Flow cytometry of spore clones. Spore clones of YJS5845 and YJS5885 were prepared for flow cytometry as described in the Materials and Methods. YJS5845 derived spore clones were diploid and YJS5885 derived spore clones were haploid. The black arrows show the position of $1 \mathrm{n}, 2 \mathrm{n}$, and 4 n DNA content. Inset shows the percentage of single cells, small budded and large budded cells in the indicated samples.

Figure S6 Ploidy of YJS5845 and YJS5885 isolates and their spore clones. Whole genome sequencing is presented for YJS5845, YJS5885 and derived spore clones (Materials and Methods). The entire set can be found in Figure 4B and Figure S6.

Table S1 Genotyping of spore clones obtained by dissection of isolate tetrads. MLH1 and PMS1 genes were PCR amplified from isolates and derived spore clones and sequenced as described in the Materials and Methods. For YJS5845, three spore clones were genotyped from random spores and 30 were genotyped from spores isolated after tetrad dissection. For YJS5885, all spore clones were genotyped from tetrad dissection. None of the incompatible YJS5845 and YJS5885 spore clones contained the Pro 271 suppressor polymorphism in MLH1 (Demogines et al. 2008). For YJM521, 24 spore clones were genotyped from six four-spore viable tetrads. For YJS4806, 24 spore clones were genotyped from random spores with 22 showing the parental genotype for MLH1, and two showing a different segregation pattern (2G:2A, 4G:0A). For YJS4810, 24 spore clones were genotyped from random spores, with all showing the parental genotype for MLH1.

Table S2 Genotyping of MLH1 and PMS1 loci in YJM and YJS isolates and derived spore clones. The sequences for the MLH1 and PMS1 open reading frames for each of the two parental chromosomes are shown relative to the S288c and SK1 sequences for YJS5845, YJS5885, and YJM521. The parental chromosomes were genotyped as "c" (S288c) or "k" (SK1) based on the amino acid polymorphisms seen at the incompatibility loci (bp 2282 in MLH1, bp 2453 in PMS1) in the S288c and SK1 sequences (Materials and Methods). The MLH1-271P suppressor allele is highlighted at bp 812 in MLH1. INS $=12$ bp insertion in PMS1; NO INS = lacking the insertion.

Table S3 Analysis of HO, PHO80 and STP22 genes in YJS5845 and YJS5885 for variants using SnpEff.

Table S4 Analysis of resistance to 5-FOA in YJS5885 spore clones. The rate of resistance to $5-$ FOA, presented with 95% confidence intervals (95% C.I.), was determined for n independent cultures of FY90 and the indicated spore clones of YJS5885 as described in the Materials and Methods. The URA3 open reading frame ($\underline{A T G}=+1$) was sequenced from 7, 2, 1, 1, 1 and 1 independent 5-FOA ${ }^{r}$ colonies from 5885-9a, 5885-15b, 5885-1a, 5885-14a, 588516a, and 5885-19a, respectively. a Significantly different from FY90 ($p<0.001$, Mann-Whitney test); ${ }^{\text {b }}$ Significantly different from EAY4087 ($\mathrm{p}<0.001$, Mann-Whitney test). YJS5885 compatible and incompatible spore clones are significantly different from each other ($p<0.001$, MannWhitney test).

10 of the 13 spore clones contained single mutations in URA3, with the following distribution: 5885-9a: Two missense (bp287,A>T; bp542, G>A), One nonsense (bp577, G>T), Two single nucleotide deletions (bp178, A deleted; bp629, G deleted), no changes in ORF for two 5-FOA ${ }^{r}$ mutants.

5885-15b: One missense (bp205, T>C), one nonsense (bp345 G>A).

5885-1a: One nonsense (bp223 A>T).
5885-14a: One nonsense (bp593 T>A).
5885-16a: No changes in ORF for one 5-FOA' mutant.
5885-19a: One nonsense (bp310 C>T).

Table S5 Sporulation and Lactate growth phenotype. Spore clones were patched on sporulation media and incubated at $30^{\circ} \mathrm{C}$ for 6 days after which they were examined for evidence of sporulation by light microscopy. Any samples with dyads, triads and tetrads were marked as being able to sporulate (+). Spore clones were also patched on YP-lactate media and scored as able to grow or not (Lactate ${ }^{+}$or ${ }^{-}$) after 4 days in $30^{\circ} \mathrm{C}$. NT: not tested.

Table S6 Assigning MLH1 polymorphisms found in heterozygous genotypes onto the MLH1 structure-function map. A structure function map for MLH1 was created from an analysis of MLH1 alanine scan and site-specific mutations, and mlh1 alleles generated based on homology to HNPCC mutations (Pang et al. 1997; Shcherbakova and Kunkel 1999; Tran and Liskay 2000; Welz-Voegele et al. 2002; Takahashi et al. 2007; Wanat et al. 2007; Romanova and Crouse 2013; Smith et al. 2013; Smith et al. 2015). Alleles that conferred a mutator phenotype in a variety of reporter assays are shown. In MLH1, amino acids 1-335 is referred to as that N -terminal/ATP binding domain, 335-509 as the linker domain, and 510-769 as the Cterminal interaction domain (Gueneau et al. 2013). See Table S7 for detailed list of the isolates that contain heterozygous polymorphisms that lie on the MLH1 structure-function map (shown here using their standardized names in the 1011 yeast genome project (Peter et al. 2018).

Table S7 Amino acid heterozygosities identified in MLH1 in 107 yeast isolates. Amino acid heterozygosities in the MLH1 open reading frame are shown for 107 isolates (relative to the MLH1 S288c sequence; Peter et al. 2018).

Literature Cited

Bui, D. T., A. Friedrich, N. Al-Sweel, G. Liti, J. Schacherer et al., 2017 Mismatch repair incompatibilities in diverse yeast populations. Genetics 205: 1459-1471.
Demogines, A., A. Wong, C. Aquadro and E. Alani, 2008 Incompatibilities involving yeast mismatch repair genes: a role for genetic modifiers and implications for disease penetrance and variation in genomic mutation rates. PLoS Genet. 4: e1000103.
Gueneau, E., C. Dherin, P. Legrand, C. Tellier-Lebegue, B. Gilquin et al., 2013. Structure of the MutLa C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site. Nat. Struct. Mol. Biol. 20: 461-468. doi: 10.1038/nsmb.2511.
Heck, J. A., J. L. Argueso, Z. Gemici, R. G. Reeves, A. Bernard et al., 2006 Negative epistasis between natural variants of the Saccharomyces cerevisiae MLH1 and PMS1 genes results in a defect in mismatch repair. Proc. Natl. Acad. Sci. U S A 103: 3256-3261.
Pang, Q., T. A. Prolla and R. M. Liskay, 1997 Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol. Cell. Biol. 17: 4465-4473.
Peter, J., M. De Chiara, A. Friedrich, J. X. Yue, D. Pflieger et al., 2018 Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556: 339-344.
Romanova, N. V., and G. F. Crouse, 2013 Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet. 9: e1003920.
Shcherbakova, P. V., and T. A. Kunkel, 1999 Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol. Cell. Biol. 19: 31773183.

Smith, C. E., N. Bowen, W. J. T. Graham, E. M. Goellner, A. Srivatsan et al., 2015 Activation of Saccharomyces cerevisiae MIh1-Pms1 endonuclease in a reconstituted mismatch repair system. J. Biol. Chem. 290: 21580-21590.
Smith, C. E., M. L. Mendillo, N. Bowen, H. Hombauer, C. S. Campbell et al., 2013 Dominant mutations in S. cerevisiae PMS1 identify the MIh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet. 9: e1003869.
Takahashi, M., H. Shimodaira, C. Andreutti-Zaugg, R. Iggo, R. D. Kolodner et al., 2007 Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res. 67: 4595-4604.
Tran, P. T., and R. M. Liskay, 2000 Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha. Mol. Cell. Biol. 20: 6390-6398.
Wanat, J. J., N. Singh and E. Alani, 2007 The effect of genetic background on the function of Saccharomyces cerevisiae mlh1 alleles that correspond to HNPCC missense mutations. Hum. Mol. Genet. 16: 445-452.
Welz-Voegele, C., J. E. Stone, P. T. Tran, H. M. Kearney, R. M. Liskay et al., 2002 Alleles of the yeast Pms1 mismatch-repair gene that differentially affect recombination- and replication-related processes. Genetics 162: 1131-1145.

Homozygous genotypes: 904 isolates

Genotyping at bp 2282 in MLH1 (G/D at amino acid 761)

1:1 G:A

4:0 G:A

3:1 G:A

3:1 G:A

Fig S2

Fig S3

Revertants, G418r, NATT

tTCCCGTTTTTTTTTTTTT-AAGGATCATGA
 TTCCCGTTTTTTTTTTTTTZAAGGATCATGA
MunhnoronMWhanhmadl YJS5845 G418r, NATr TTCCCGTTTTTTTTTTTTTHAAGGATCATGA
 TTCCCGTTTTTTTTTTTTTHAAGGATCATGA

TTCCCGTTTTTTTTTTTTTHZAAGGATCATGA

TTCCCGTTTTTTTTTTTTTA-AAGGATCATGA

TTCCCGTTTTTTTTTTTTTAAAGGATCATGA

TTCCCGTTTTTTTTTTTTTAAAGGATCATGA

Controls, NAT', G418s ${ }^{\text {s }}$

TTCCCGTTTTTTTTTTTTTTAAGGATCATGA

TTCCCGTTTTTTTTTTTTTTAAGGATCATGA

5885-9a NATr, G418s TTCCCGTTTTTTTTTTTTTTAAGGATCATGA

5845-19 NATr, G418s

Fig S5

Table S1 Genotyping of spore clones obtained by dissection of isolate tetrads

Number of spore clones genotyped for MLH1-PMS1 as:

Lab name	MLH1 genotype	PMS1 genotype	Ancestral	SK1	S288c	Incompatible
YJS5845	SK1/S288c	SK1/S288c	5	17	1	10
YJS5885	SK1/S288c	SK1/S288c	5	6	11	11
YJM521	SK1/S288c	SK1/S288c	5	7	7	5
YJS4806	SK1/S288c (3:1)	SK1	not relevant			
YJS4810	SK1/S288c (3:1)	SK1	not relevant			
YJS5882	SK1/S288c (3:1)	SK1-S288c (2:2)	not relevant			
YJS5678	SK1/S288c (3:1)	SK1/S288c (2:2)	not relevant			
YJS5512	SK1/S288c (3:1)	SK1/S288c (2:2)	not relevant			
YJS4970	SK1/S288c (2:2)	SK1/S288c (2:2)	not relevant			

MLH1 and PMS1 genes were PCR amplified from isolates and derived spore clones and sequenced as described in the Materials and Methods. For YJS5845, three spore clones were genotyped from random spores and 30 were genotyped from spores isolated after tetrad dissection. For YJS5885, all spore clones were genotyped from tetrad dissection. None of the incompatible YJS5845 and YJS5885 spore clones contained the Pro 271 suppressor polymorphism in MLH1 (Demogines et al. 2008). For YJM521, 24 spore clones were genotyped from six four-spore viable tetrads. For YJS4806, 24 spore clones were genotyped from random spores with 22 showing the parental genotype for MLH1, and two showing a different segregation pattern (2G:2A, 4G:0A). For YJS4810, 24 spore clones were genotyped from random spores, with all showing the parental genotype for MLH1.

Table S2 Genotyping of MLH1 and PMS1 loci in YJM and YJS isolates and derived spore clones

base pair	aa	S288c	SK1	YJS5845c	YJS5845k	YJS5885c	YJS5885k	YJM523	YJM521c	YJM521k
MLH1										
486	162	C, ALA	T, ALA	C	C	C	C	C	C	C
552	184	C, SER	C, SER	C	C	C	C	C	T, SER	C
720	240	C, SER	A, ARG	C	C	C	C	C	C	C
812	271	T, LEU	C, PRO	T	C	T	C	T	C	C
834	278	C, SER	T, SER	C	T	C	T	C	C	T
997	333	G, GLU	A, LYS	G	G	G	G	G	G	G
1044	348	T, ILE	C, ILE	T	C	T	C	T	T	C
1237	413	T, LEU	C, LEU	T	C	T	C	T	T	C
1393	465	G, ASP	G, ASP	G	G	G	G	G	A, ASN	G
1875	625	T, SER	C, SER	T	C	T	C	T	T	C
2032	678	G, ASP	A, ASN	G	A	G	A	G	G	A
2108	703	C, PRO	T, LEU	C	T	C	T	C	C	T
2282	761	A, ASP	G, GLY	A	G	A	G	A	A	G
PMS1										
122	41	A, ASN	G, SER	G	G	G	G	A	A	A
162	54	T, SER	T, SER	T	T	T	C	T	T	T
177	59	T, ASP	T, ASP	T	T	T	T	C, ASP	T	C, ASP
210	70	G, GLU	G, GLU	G	G	G	G	A, GLU	G	A, GLU
213	71	C, PHE	T, PHE	T	T	T	T	T	C	T
258	86	T, ASP	C, ASP	C	C	C	C	C	C	C
333	111	G, VAL	C, VAL	C	C	C	C	C	C	C
335	112	T, ILE	C, THR	C	C	C	C	T	T	T
465	155	C, PRO	T, PRO	T	T	T	T	T	C	T

552	184	T, ALA	A, ALA	T	A	T	A	T	T	T
558	186	T, ILE	C, ILE	C	C	C	C	C	T	C
708	236	A, LEU	G, LEU	G	G	G	G	G	A	G
711	237	T, ASN	C, ASN	C	C	C	C	C	T	C
810	270	G, SER	C, SER	G	C	G	C	G	G	G
855	285	G, VAL	A, VAL	G	A	G	A	G	G	G
858	286	T, ASN	T, ASN	T	T	T	T	C, ASN	T	C, ASN
918	306	C, PHE	C, PHE	C	C	C	C	C	T, PHE	C
925	309	G, VAL	G, VAL	G	G	G	G	G	T, PHE	G
939	313	T, ALA	A, ALA	A	A	A	A	A	T	A
1150	384	T, PHE	G, VAL	G	G	G	G	G	T	G
1175	392	A, GLU	A, GLU	A	A	A	A	T, ASP	A	T, ASP
1191	397	C, ASN	C, ASN	T, ILE	C	T, ILE	C	T, ILE	C	T, ILE
1199	400	C, THR	G, SER	G	G	G	G	G	C	G
1201	401	G, ALA	G, ALA	T, SER	G	T, SER	G	T, SER	G	T, SER
1249	416	NO INS	NO INS	INS						
1329	443	C, ILE	C, ILE	T, ILE	C	C	C	T, ILE	C	T, ILE
1538	513	A, TYR	T, PHE	A	T	A	T	A	A	A
1575	525	G, ALA	C, ALA	G	C	G	C	G	G	G
1691	564	C, ALA	C, ALA	C	C	C	C	T, VAL	C	T, VAL
1782	594	T, TYR	C, TYR	C	C	C	C	C	T	C
1821	607	A, GLU	G, GLU	G	G	G	G	G	A	G
2076	692	T, ASP	T, ASP	C, ASP	T	T	T	T	T	T
2303	768	A, LYS	A, LYS	A	A	A	A	G, ARG	A	G, ARG
2322	774	T, THR	G, THR	G	G	G	G	G	T	G
2364	788	G, LEU	A, LEU	A	A	A	A	A	G	A
2453	818	G, ARG	A, LYS	G	A	G	A	A	G	A

The sequences for the MLH1 and PMS1 open reading frames for each of the two parental chromosomes are shown relative to the S288c and SK1 sequences for YJS5845, YJS5885, and YJM521. The parental chromosomes were genotyped as "c" (S288c) or "k" (SK1) based on the amino acid polymorphisms seen at the incompatibility loci (bp 2282 in MLH1, bp 2453 in PMS1) in the S288c and SK1 sequences (Materials and Methods). The MLH1-271P suppressor allele is highlighted at bp 812 in MLH1. INS $=12$ bp insertion in PMS1; NO INS = lacking the insertion.

Table S3 Analysis of HO, PHO80 and STP22 genes in YJS5845 and YJS5885 for variants using SnpEff.

YJS5845				
Gene Name	Mutation	Type of mutation	Amino acid change	Predicted effect of missense mutation by SnpEff
	1756T>C	missense	Cys586Arg	Deleterious
	$1740 \mathrm{C}>$ T	synonymous	Asn580Asn	
	$1722 \mathrm{~T}>\mathrm{C}$	synonymous	His574His	
	1718C>T	missense	Pro573Leu	Tolerated
	1710C>T	synonymous	Val570Val	
HO gene in Chromosome IV	1635C>T	synonymous	Gly545Gly	
	1214C>T	missense	Ser405Leu	Tolerated
	1059T>C	synonymous	Val353Val	
	1026C>A	synonymous	Gly342Gly	
	789A>G	synonymous	Leu263Leu	
	667A>G	missense	Ser223Gly	Tolerated
	565G>A	missense	Ala189Thr	Tolerated
	369G>A	synonymous	Arg123Arg	
PHO80 in Chromosome XV	$21 \mathrm{~A}>\mathrm{C}$	missense	Glu7Asp	Tolerated
	$111 \mathrm{C} \times \mathrm{A}$	synonymous	Val37Val	
	1000C>A	missense	Gln334Lys	Tolerated
	$546 \mathrm{~A}>\mathrm{G}$	synonymous	Pro182Pro	
	$528 \mathrm{~T}>\mathrm{C}$	synonymous	Asn176Asn	
Chromosome III	525G>A	synonymous	Gln175GIn	
	$492 \mathrm{C}>\mathrm{G}$	synonymous	Pro164Pro	
	36G>A	synonymous	Ala12Ala	

YJS5885

Gene Name	Mutation	Type of mutation	Amino acid change	Predicted effect of missense mutation by SnpEff
HO gene	1740C>T	synonymous	Asn580Asn	
Chromosome IV	$1710 \mathrm{C}>$ T	synonymous	Val570Val	
	$1635 \mathrm{C}>$ T	synonymous	Gly545Gly	
	$1424 \mathrm{~T}>$ A	missense	Leu475His	Tolerated
	$1214 \mathrm{C}>$ T	missense	Ser405Leu	Tolerated
	$667 \mathrm{~A}>\mathrm{G}$	missense	Ser223Gly	Tolerated
	$369 \mathrm{G}>\mathrm{A}$	synonymous	Arg123Arg	

YJS5885				
Gene Name	Mutation	Type of mutation	Amino acid change	Predicted effect of missense mutation by SnpEff
PHO80 gene in Chromosome XV	21A>C	missense	Glu7Asp	Tolerated
	$111 \mathrm{G}>\mathrm{A}$	synonymous	Val37Val	
	266C>T	missense	Ser89Phe	Tolerated
	$375 A>G$	synonymous missense	Thr125Thr Pro247Ser	
	$739 \mathrm{C}>$ T			Tolerated
STP22 gene in Chromosome III	$1000 \mathrm{C}>\mathrm{A}$	missense	Gln334Lys Asn176Asn	Tolerated
	$528 \mathrm{~T}>\mathrm{C}$	synonymous		
	525G>A	synonymous	Gln175GIn	Tolerated Tolerated
	$492 \mathrm{C}>\mathrm{G}$	synonymous	Pro164Pro	
	$123 \mathrm{~T}>\mathrm{A}$	missense	Asn41Lys	
	78C>A	missense	Asn26Lys	
	36G>A	synonymous	Ala12Ala	

Table S4 Analysis of resistance to 5-FOA in YJS5885 spore clones.

Strain or spore clone	Incompatible/ Compatible	Rate 5-FOA $\left(10^{-7}\right),(95 \%$ C.I.), n	Relative rate
FY90	C	$0.79(0.26-2.6), 22$	1
EAY4087 (m/h14)	Not applicable	$16^{\mathrm{a}}(9.5-18), 20$	20
$5885-1 \mathrm{a}$	C	$1.9^{\mathrm{b}}(0.72-5.2), 15$	2.4
$5885-14 \mathrm{a}$	C	$0.98^{\mathrm{b}}(0.53-2.1), 15$	1.2
$5885-15 \mathrm{~b}$	C	$0.48^{\mathrm{b}}(0.37-3.2), 15$	0.61
$5885-6 \mathrm{a}$	C	$0.68^{\mathrm{b}}(0.32-1.5), 15$	0.86
$5885-9 \mathrm{a}$	I	$6.0^{\mathrm{a}, \mathrm{b}}(4.7-9.7), 15$	7.6
$5885-16 \mathrm{a}$	I	$1.5^{\mathrm{b}}(0.92-1.9), 15$	1.9
$5885-19 \mathrm{a}$	I	$6.4^{\mathrm{a}, \mathrm{b}}(2.9-7.9), 15$	8.1

The rate of resistance to $5-\mathrm{FOA}$, presented with 95% confidence intervals (95% C.I.), was determined for n independent cultures of FY90 and the indicated spore clones of YJS5885 as described in the Materials and Methods. The URA3 open reading frame ($\underset{A}{ } T G=+1$) was sequenced from 7, 2, 1, 1, 1 and 1 independent 5-FOA' colonies from 5885-9a, 5885-15b, 58851a, 5885-14a, 5885-16a, and 5885-19a, respectively. ${ }^{\text {a }}$ Significantly different from FY90 ($p<0.001$, Mann-Whitney test); ${ }^{\text {b }}$ Significantly different from EAY4087 ($p<0.001$, Mann-Whitney test). YJS5885 compatible and incompatible spore clones are significantly different from each other ($p<0.001$, Mann-Whitney test).

10 of the 13 spore clones contained single mutations in URA3, with the following distribution: 5885-9a: Two missense (bp287,A>T; bp542, G>A), One nonsense (bp577, G>T), Two single nucleotide deletions (bp178, A deleted; bp629, G deleted), no changes in ORF for two 5FOA' mutants.
5885-15b: One missense (bp205, T>C), one nonsense (bp345 G>A). 5885-1a: One nonsense (bp223 A>T). 5885-14a: One nonsense (bp593 T>A). 5885-16a: No changes in ORF for one 5-FOAr mutant. 5885-19a: One nonsense (bp310 C>T).

Table S5 Sporulation and lactate growth phenotype

	Sporulation	Lactate + or -		Sporulation	Lactate + or -
5885-1a	-	+	5845-19a	-	-
5885-6a	-	+	5845-22a	+	+
5885-10a	-	-	5845-27a	+	+
5885-20b	-	+	5845-7a	+	+
5885-5b	-	+	5845-28b	+	+
5885-15b	-	-	5845-29a	+	+
5885-14a	-	+	5845-41a	-	-
5885-19b	-	-	5845-16	+	+
5885-6b	-	+	5845-35a	poor growth- few dyads	+
5885-5a	-	+	5845-18a	+	+
5885-11a	-	+	5845-21a	-	+
5885-12a	-	-	5845-20a	+	+
5885-18a	-	-	5845-30a	+	-
5885-9a	-	-	5845-19	+	+
5885-4b	-	+	5845-36b	+	NT
5885-19a	-	-			
5885-16a	-	-			
5885-3a	-	+			
5885-12b	-	-			
5885-1b	-	NT			
5885-2a	-	NT			
5885-4a	-	NT			
5885-7a	+	NT			
5885-8a	-	NT			
5885-13a	-	NT			
5885-17a	$+$	NT			

Spore clones were patched on sporulation media and incubated at $30^{\circ} \mathrm{C}$ for 6 days after which they were examined for evidence of sporulation by light microscopy. Any samples with dyads, triads and tetrads were marked as being able to sporulate (+). Spore clones were also patched on YP-lactate media and scored as able to grow or not (Lactate ${ }^{+}$or ${ }^{-}$) after 4 days in $30^{\circ} \mathrm{C}$. NT: not tested.

Table S6 Assigning MLH1 polymorphisms found in heterozygous genotypes onto the MLH1 structure-function map.
\qquad
mlh1 allele (Reference) Amino acid position: isolate(s) with heterozygous genotype

N-terminal/ATP binding
I22T (Wanat et al. 2007) 22-ILE/LEU: APL, CFI, CFN

Linker (Argueso et al. 2003)
R390A,K391A
K393A,R394A (Argueso et al. 2003)

R401A,D403A
391-LYS/ASN: BHL, BMQ
393-LYS/GLU: CPN, CPR
402-ILE/LEU: ASN, BGB, BGI, BGM, BGS

C-terminal interaction
(Argueso et al. 2003)

E603A,D605A,E606A	605-ASP/ASN: BHL, BMQ
K648A,K650A	650-LYS/THR: ADL, AKT, BFE, BFG, BFM, BML, BMM, BTD, BTE,
E680A,D681A,E682A	681-ASP/ASN: CPN, CPR

A structure function map for MLH1 was created from an analysis of MLH1 alanine scan and sitespecific mutations, and mlh1 alleles generated based on homology to HNPCC mutations (Pang et al. 1997; Shcherbakova and Kunkel 1999; Tran and Liskay 2000; Welz-Voegele et al. 2002; Takahashi et al. 2007; Wanat et al. 2007; Romanova and Crouse 2013; Smith et al. 2013; Smith et al . 2015). Alleles that conferred a mutator phenotype in a variety of reporter assays are shown. In MLH1, amino acids 1-335 is referred to as that N-terminal/ATP binding domain, 335509 as the linker domain, and 510-769 as the C-terminal interaction domain (Gueneau et al. 2013). See Table S7 for detailed list of the isolates that contain heterozygous polymorphisms that lie on the MLH1 structure-function map (shown here using their standardized names in the 1011 yeast genome project (Peter et al. 2018).

䟭
 E

 ишшшипитич

 \%

ใธำ

