## File S1. Methow RAD - genome alignment \& LD analysis

Principal component analysis of RAD data in the hatchery and natural origin (HOR and NOR, respectively) revealed the presence of two clusters separated along the PC1 axis. However, these clusters did not correspond to the hatchery and natural-origin samples. To determine if there was a pattern in the genomic location for loci driving the separation of the clusters, RAD tags were assigned to 0 . mykiss chromosomes based on their alignment to scaffolds. The distribution of PC1 loadings are illustrated in Figure S1. Generally speaking, markers with PC1 loadings in the extreme of the distribution are located on chromosome 5, with a few also on chrUn. Those markers are also likely to belong on chromosome 5, and linkage disequilibrium (LD) between these markers was further explored.

File S1-Figure 1. PC1 loadings by 0 . mykiss chromosome


## Testing the pattern of LD among markers with the greatest loading on PC1

RAD markers on chromosome 5 have previously been shown to be associated with divergence between resident and migrant O. mykiss (Pearse et al. 2014), and also associated with QTL for growth (Nichols et al. 2008), age at sexual maturation (O'Malley et al. 2003, Leder et al. 2006) , and development rate (Robison et al. 2001, Nichols et al. 2007). To compare markers in the present study, with that of Pearse et al. (2014), RAD markers from this study were reciprocally aligned to RAD markers from Miller et al. (2012) using bowtie 2 with default parameters; only markers with reciprocal best hits were called a match. RAD loci in this study matching to those of Miller et al. (2012) were renamed according to that nomenclature, and all other loci from this study were prepended with 'M' (for Methow River). Only four markers used in Pearse et al. (2014) were identified as the same loci in this study.

Any marker from this study that mapped to chromosome 5 in the $O$. mykiss reference genome, to the linkage group that represents chromosome 5 in Miller et al. (2012) (called WS03 in that reference), or with a PC1 loading less than -0.4 was included in LD calculations for loci on that chromosome. The R package LDheatmap was used to calculate and plot LD between these markers. Very high LD ( $\mathrm{r}^{2}>0.9$ ) was observed for a group of 20 markers, including R14589 which was identified in a block of strong LD in Pearse et al. (2014). For each of those markers, only two genotypic classes were represented, and the heterozygotes at these markers were found in the smaller cluster of individuals.


File S1-Figure 2. Linkage disequilibrium heat plot for markers on chromosome 5, or showing extreme loadings on PC1.

Markers were rank-ordered by LD with marker R14589 to select markers to remove from an additional PCA to determine how this tightly linked block of markers influenced the differentiation between the two groups of points in the PCA with all markers. As a result, marker R14589 and markers with LD greater than 0.2 with this marker ( 29 total) were removed from the PCA to perform another PCA.


File S1-Figure 3. Linkage disequilibrium with marker R14589 plotted with PC1 loading. Darker circles indicate regions of overlapping points.

File S1-Table 1. Summary data for chromosome Omy5 loci evaluated for LD. Markers from this study were aligned to the $O$. mykiss reference genome scaffolds (alignments given by CHR and POS) and chromosomes (alignments are given by chrom, chrom_pos_start and chrom_pos_end), and to the Miller et al. (2012) linkage map (alignments are given to linkage groups (LG) and the cm position of the matched marker).

| NAME | locus | CHR | POS | chrom | chrom_pos_start | chrom_pos_end | WR.x.Sw.LG | WR.x.Sw.cM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M10223 | 10223 | scaffold_133 | 847089 | chrUn_5 | 28757971 | 30308002 | NA | NA |
| M12432 | 12432 | scaffold_1431 | 175517 | chrUn_5 | 30578078 | 30814687 | NA | NA |
| M13044 | 13044 | scaffold_145 | 73771 | chr_5 | 485803 | 1988661 | NA | NA |
| M15679 | 15679 | scaffold_1579 | 117215 | chrUn_5 | 25121519 | 25326669 | NA | NA |
| M17606 | 17606 | scaffold_1668 | 139214 | chrUn_5 | 47450542 | 47642168 | NA | NA |
| M19487 | 19487 | scaffold_1765 | 66360 | chrUn_5 | 6430656 | 6605773 | NA | NA |
| M20544 | 20544 | scaffold_181 | 497994 | chrUn_5 | 32441205 | 33799332 | NA | NA |
| M20579 | 20579 | scaffold_181 | 857986 | chrUn_5 | 32441205 | 33799332 | NA | NA |
| M22729 | 22729 | scaffold_194 | 38919 | chrUn_5 | 3898256 | 5200986 | NA | NA |
| M27544 | 27544 | scaffold_223 | 35481 | chrUn_5 | 10560181 | 11781655 | NA | NA |
| M27976 | 27976 | scaffold_226 | 768187 | chr_5 | 1988762 | 3204057 | NA | NA |
| M3648 | 3648 | scaffold_1110 | 7552 | chrUn_5 | 26319955 | 26655648 | NA | NA |
| M41969 | 41969 | scaffold_336 | 693222 | chrUn_5 | 35562889 | 36511326 | NA | NA |
| M4259 | 4259 | scaffold_1131 | 116411 | chr_5 | 3204158 | 3531843 | NA | NA |
| M43293 | 43293 | scaffold_3495 | 64030 | chrUn_5 | 47684273 | 47748869 | NA | NA |
| M50868 | 50868 | scaffold_423 | 538454 | chrUn_5 | 244261 | 1077352 | NA | NA |
| M51225 | 51225 | scaffold_4295 | 30259 | chrUn_5 | 24205506 | 24258710 | NA | NA |
| M53147 | 53147 | scaffold_44 | 2152469 | chrUn_5 | 11946418 | 14162933 | NA | NA |
| M53170 | 53170 | scaffold_44 | 586509 | chrUn_5 | 11946418 | 14162933 | NA | NA |
| M55196 | 55196 | scaffold_474 | 12781 | chrUn_5 | 9471005 | 10242931 | NA | NA |
| M63319 | 63319 | scaffold_5777 | 6880 | chrUn_5 | 39564835 | 39605385 | NA | NA |
| M63631 | 63631 | scaffold_580 | 585424 | chrUn_5 | 39605486 | 40265372 | NA | NA |
| M67835 | 67835 | scaffold_636 | 167843 | chrUn_5 | 20824173 | 21425557 | NA | NA |
| M67929 | 67929 | scaffold_63871 | 1878 | chrun | $1.004 \mathrm{e}+09$ | $1.004 \mathrm{e}+09$ | NA | NA |
| M7166 | 7166 | scaffold_1223 | 194369 | chrUn_5 | 27327322 | 27621552 | NA | NA |
| M7169 | 7169 | scaffold_1223 | 43404 | chrUn_5 | 27327322 | 27621552 | NA | NA |
| M72267 | 72267 | scaffold_700 | 340182 | chrUn_5 | 42804834 | 43361543 | NA | NA |
| M72276 | 72276 | scaffold_700 | 81857 | chrUn_5 | 42804834 | 43361543 | NA | NA |
| M72277 | 72277 | scaffold_700 | 81765 | chrUn_5 | 42804834 | 43361543 | NA | NA |
| M74854 | 74854 | scaffold_74612 | 556 | chrun | 43858657 | 43860757 | NA | NA |
| M74903 | 74903 | scaffold_746 | 338531 | chrUn_5 | 43363897 | 43884976 | NA | NA |
| M74923 | 74923 | scaffold_746 | 450957 | chrUn_5 | 43363897 | 43884976 | NA | NA |
| M78046 | 78046 | scaffold_79932 | 332358 | chrUn_5 | 14329862 | 14940792 | NA | NA |
| M78984 | 78984 | scaffold_80 | 370948 | chrUn_5 | 21425658 | 23241774 | NA | NA |
| M78998 | 78998 | scaffold_80 | 638491 | chrUn_5 | 21425658 | 23241774 | NA | NA |
| M79008 | 79008 | scaffold_80 | 787583 | chrUn_5 | 21425658 | 23241774 | NA | NA |
| M79280 | 79280 | scaffold_817 | 62001 | chrUn_5 | 44416933 | 44896860 | NA | NA |
| M82771 | 82771 | scaffold_902 | 195155 | chrUn_5 | 45411897 | 45840962 | NA | NA |
| M86071 | 86071 | scaffold_989 | 352843 | chrUn_5 | 46669336 | 47061480 | NA | NA |


| M86397 | 86397 | scaffold_998 | 311858 | chrUn_5 | 47061581 | 47447171 | NA | NA |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M86504 | 86504 | scaffold_99 | 253800 | chrUn_5 | 7744778 | 9461712 | NA | NA |
| M8953 | 8953 | scaffold_1298 | 210095 | chrUn_5 | 28205303 | 28476615 | NA | NA |
| R02785 | 36512 | scaffold_289 | 185388 | chrUn | 54699888 | 55748466 | WS03 | 63.37 |
| R05020 | 13295 | scaffold_1470 | 88963 | chrUn_5 | 30827699 | 31056188 | WS03 | 63.37 |
| R14589 | 55216 | scaffold_474 | 34869 | chrUn_5 | 9471005 | 10242931 | WS03 | 63.37 |
| R18196 | 86651 | scaffold_9 | 3013453 | chrUn_11 | 5987197 | 9277574 | WS03 | 63.37 |
| R19157 | 28941 | scaffold_23292 | 5493 | chrUn_5 | 34771175 | 34777525 | WS03 | 63.37 |
| R19388 | 56887 | scaffold_494 | 647499 | chrUn_5 | 23391192 | 24143072 | WS03 | 63.37 |
| R21285 | 72254 | scaffold_700 | 218953 | chrUn_5 | 42804834 | 43361543 | WS03 | 63.37 |
| R22052 | 24027 | scaffold_2008 | 70197 | chrUn_5 | 33946450 | 34083919 | WS03 | 63.37 |
| R26306 | 53176 | scaffold_44 | 679589 | chrUn_5 | 11946418 | 14162933 | WS03 | 63.37 |
| R26674 | 24028 | scaffold_2008 | 70130 | chrUn_5 | 33946450 | 34083919 | WS03 | 63.37 |
| R28579 | 20528 | scaffold_181 | 1344216 | chrUn_5 | 32441205 | 33799332 | WS03 | 63.37 |
| R30220 | 71631 | scaffold_693 | 227499 | chrUn_5 | 19482124 | 20041108 | WS03 | 63.37 |
| R32831 | 43645 | scaffold_3527 | 28374 | chrUn_5 | 36577154 | 36640953 | WS03 | 63.37 |
| R39365 | 14027 | scaffold_15031 | 10579 | chrUn_5 | 31068942 | 31080929 | WS03 | 63.37 |

File S1-Table 2. Summary statistics for loci aligning to 0 . mykiss chromosome 5. These include the numbers observed in each genotypic class (HOM1, HET, HOM2), the p-value for tests for Hardy Weinberg Equilibrium (HWE), the PC1 loading, observed heterozygosity (Het) and linkage disequilibrium (r2) with marker R14589 identified in Pearse et al. (2014).

| NAME | locus | HOM1 | HET | HOM2 | P_HWE | PC1_loading | Het | r2_with_R14589 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M10223 | 10223 | 76 | 14 | 1 | 0.51 | 0.045 | 0.1667 | 0.003086 |
| M12432 | 12432 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M13044 | 13044 | 60 | 28 | 3 | 1 | 0.058 | 0.2948 | 0.02249 |
| M15679 | 15679 | 80 | 11 | 0 | 1 | -0.057 | 0.1196 | 0.0008522 |
| M17606 | 17606 | 70 | 21 | 0 | 0.6 | 0.199 | 0.2191 | 0.0152 |
| M19487 | 19487 | 80 | 11 | 0 | 1 | 0.107 | 0.1308 | 0.007938 |
| M20544 | 20544 | 71 | 20 | 0 | 0.59 | 0.187 | 0.201 | 0.01328 |
| M20579 | 20579 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M22729 | 22729 | 81 | 10 | 0 | 1 | -0.587 | 0.1173 | 0.3383 |
| M27544 | 27544 | 57 | 28 | 6 | 0.36 | 0.27 | 0.3299 | 0.02814 |
| M27976 | 27976 | 75 | 16 | 0 | 1 | -0.864 | 0.142 | 0.7669 |
| M3648 | 3648 | 79 | 11 | 1 | 0.37 | 0.109 | 0.1562 | 0.00965 |
| M41969 | 41969 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M4259 | 4259 | 76 | 15 | 0 | 1 | -0.827 | 0.1296 | 0.692 |
| M43293 | 43293 | 67 | 23 | 1 | 1 | -0.146 | 0.2492 | 0.03016 |
| M50868 | 50868 | 72 | 17 | 2 | 0.33 | 0.016 | 0.1644 | 0.002404 |
| M51225 | 51225 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M53147 | 53147 | 37 | 44 | 10 | 0.65 | 0.138 | 0.4711 | 0.06062 |
| M53170 | 53170 | 78 | 12 | 1 | 0.42 | 0.022 | 0.1412 | $3.89 \mathrm{e}-05$ |
| M55196 | 55196 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M63319 | 63319 | 52 | 32 | 7 | 0.58 | 0.096 | 0.4016 | 0.003501 |
| M63631 | 63631 | 37 | 40 | 14 | 0.65 | 0.104 | 0.4614 | 0.06062 |
| M67835 | 67835 | 77 | 14 | 0 | 1 | 0.091 | 0.1053 | 0.00482 |
| M67929 | 67929 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M7166 | 7166 | 46 | 42 | 3 | 0.11 | -0.02 | 0.3947 | 0.00399 |
| M7169 | 7169 | 79 | 12 | 0 | 1 | 0.226 | 0.1296 | 0.007938 |
| M72267 | 72267 | 27 | 50 | 14 | 0.29 | -0.333 | 0.49 | 0.164 |
| M72276 | 72276 | 78 | 12 | 1 | 0.42 | 0.193 | 0.1292 | 0.007938 |
| M72277 | 72277 | 80 | 11 | 0 | 1 | -0.853 | 0.1296 | 0.692 |
| M74854 | 74854 | 80 | 11 | 0 | 1 | -0.853 | 0.1296 | 0.692 |
| M74903 | 74903 | 80 | 11 | 0 | 1 | 0.202 | 0.09336 | 0.005381 |
| M74923 | 74923 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M78046 | 78046 | 72 | 15 | 4 | 0.03 | 0.227 | 0.2589 | 0.01923 |
| M78984 | 78984 | 63 | 27 | 1 | 0.45 | 0.137 | 0.2878 | 0.02249 |
| M78998 | 78998 | 77 | 13 | 1 | 0.47 | -0.021 | 0.1412 | 0.000241 |
| M79008 | 79008 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M79280 | 79280 | 73 | 18 | 0 | 0.59 | -0.949 | 0.1644 | 0.92 |
| M82771 | 82771 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| M86071 | 86071 | 77 | 14 | 0 | 1 | 0.032 | 0.1532 | 0.001291 |


| M86397 | 86397 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M86504 | 86504 | 81 | 10 | 0 | 1 | -0.83 | 0.1292 | 0.692 |
| M8953 | 8953 | 50 | 36 | 5 | 0.79 | 0.018 | 0.3819 | 0.0004274 |
| R02785 | 36512 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| R05020 | 13295 | 73 | 18 | 0 | 0.59 | -0.949 | 0.1644 | 0.92 |
| R14589 | 55216 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 1 |
| R18196 | 86651 | 81 | 10 | 0 | 1 | -0.079 | 0.09259 | 0.006823 |
| R19157 | 28941 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| R19388 | 56887 | 24 | 53 | 14 | 0.14 | 0.264 | 0.4942 | 0.08587 |
| R21285 | 72254 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| R22052 | 24027 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| R26306 | 53176 | 74 | 17 | 0 | 1 | -0.618 | 0.2083 | 0.346 |
| R26674 | 24028 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| R28579 | 20528 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| R30220 | 71631 | 72 | 19 | 0 | 0.59 | -0.976 | 0.1755 | 0.9984 |
| R32831 | 43645 | 75 | 16 | 0 | 1 | -0.038 | 0.1651 | 0.002404 |
| R39365 | 14027 | 65 | 22 | 4 | 0.25 | -0.854 | 0.2492 | 0.6297 |

## References

Leder EH, Danzmann RG, Ferguson MM. 2006. The candidate gene, clock, localizes to a strong spawning time quantitative trait locus region in rainbow trout. J Hered 97: 74-80.

Miller MR, Brunelli JP, Wheeler PA, Liu S, Rexroad CE, Palti Y, Doe CQ, Thorgaard GH. 2012. A conserved haplotype controls parallel adaptation in geographically distant salmonid populations. Molec Ecol 21: 237-249.

Nichols KM, Broman KW, Sundin K et al. 2007. Quantitative trait loci X maternal cytoplasmic environment interaction for development rate in Oncorhynchus mykiss. Genetics 175: 335-347.

Nichols KM, Edo AF, Wheeler PA, Thorgaard GH. 2008. The genetic basis of smoltification-related traits in Oncorhynchus mykiss. Genetics 179: 1559-1575.

O'Malley KG, Sakamoto T, Danzmann RG, Ferguson MM. 2003. Quantitative trait loci for spawning date and body weight in rainbow trout: testing for conserved effects across ancestrally duplicated chromosomes. J Hered 94: 273-284.

Pearse DE, Miller MR, Abadia-Cardoso A, Garza JC. 2014. Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout. Proc Roy Soc B 281: 20140012.

