SUPPLEMENTARY TABLES

Strain	genotype	reference
BY4741	MAT a his3 leu2 met15 ura3	(Shoemaker <i>et al.</i> 1996)
IH1793;	MATa lys1	(MICHAELIS AND HERSKOWITZ 1988)
ATCC#204279		
SM2331	MAT a trp1 leu2 ura3 his4 can1	(CHEN <i>et al.</i> 1997)
	mfa1-∆1 mfa2-∆1	
yWS304	MAT a his3∆1 leu2∆0 met15∆0	(GIAEVER <i>et al.</i> 2002)
	ura3∆0 ydj1∆::KAN ^R	
yWS1632	MAT a his3 leu2 met15 ura3	(GIAEVER <i>et al.</i> 2002)
	ram1∆::KAN ^R	
yWS1635	MAT a his3 leu2 met15 ura3	(HILDEBRANDT <i>et al.</i> 2016)
	ydj1∆::KAN ^R ste14∆::KAN ^R	
yWS2542	MAT a his3 leu2 met15 ura3	This study
	ydj1∆::NAT ^R ram1∆::KAN ^R	
yWS2544	MAT a his3 leu2 met15 ura3	This study
	ydj1∆::NAT ^R	

 Table S1.
 Yeast strains used in this study.

gene	identifier	genotype	reference
vector	pRS315	CEN LEU2	(SIKORSKI AND HIETER 1989)
	pRS316	CEN URA3	(SIKORSKI AND HIETER 1989)
YDJ1	pWS942	CEN URA3 YDJ1 (CASQ)	(HILDEBRANDT <i>et al.</i> 2016)
	pWS1132	CEN URA3 YDJ1 (SASQ)	(HILDEBRANDT <i>et al.</i> 2016)
	pWS1246	CEN URA3 YDJ1 (CTLM)	(HILDEBRANDT <i>et al.</i> 2016)
	pWS1286	CEN URA3 YDJ1 (CVIA)	(HILDEBRANDT <i>et al.</i> 2016)
	pWS1339	CEN URA3 YDJ1 (AQCASQ)	This study
	pWS1341	CEN URA3 YDJ1 (VACASQ	This study
	pWS1373	CEN URA3 YDJ1 (CQSQ)	This study
	pWS1372	CEN URA3 YDJ1 (CAAQ)	This study
	pWS1343	CEN URA3 YDJ1 (CASA)	This study
	pWS1402	CEN URA3 YDJ1 (CAIQ)	This study
	pWS1403	CEN URA3 YDJ1 (CALQ)	This study
	pWS1404	CEN URA3 YDJ1 (CAMQ)	This study
	pWS1409	CEN URA3 YDJ1 (CAVQ)	This study
	pWS1623	CEN URA3 ydj1::NAT ^R	This study
	various	CEN URA3 YDJ1-Cxxx variants (n=153)	This study
MFA1	pWS610	CEN LEU2 MFA1 (CVIA)	(KRISHNANKUTTY <i>et al.</i> 2009)
	pWS1587	CEN LEU2 MFA1 (CRVG)	This study
	pWS1588	CEN LEU2 MFA1 (CVLS)	This study
	pWS1589	CEN LEU2 MFA1 (CVLG)	This study
	pWS1590	CEN LEU2 MFA1 (CTLC)	This study
	pWS1591	CEN LEU2 MFA1 (CSVM)	This study
	pWS1616	CEN LEU2 MFA1 (CRIW)	This study
	pWS1617	CEN LEU2 MFA1 (CALT)	This study
	pWS1618	CEN LEU2 MFA1 (CAVA)	This study
	pWS1619	CEN LEU2 MFA1 (CWGG)	This study
	pWS1620	CEN LEU2 MFA1 (CSIS)	This study
	pWS1621	CEN LEU2 MFA1 (CSFN)	This study
	pWS1622	CEN LEU2 MFA1 (CQIS)	This study
	pWS1627	CEN LEU2 MFA1 (CALL)	This study
	pWS1628	CEN LEU2 MFA1 (CVCL)	This study
	pWS1629	CEN LEU2 MFA1 (CAGF)	This study

 Table S2.
 Plasmids used in this study.

Gene	Oligo	Mutation	sequence $(5^{\prime} \rightarrow 3^{\prime})^{\circ}$
Plasmid	oWS219 ^a	NA ^b	TGACCATGATTACGCCAAGC
UTR			
YD.11	oWS983	AOCASO	AACTATGATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGcTCAA
1201	0110000	ngonog	TGTGCATCTCAATGATTTTCT
	oWS984	VQCASA	GAAGAAGAACAAGGTGGCGAAGGTGTTCAA
			TGT GCATCTgcATGATTTTCTTGATAAAAAAAGATCA
	oWS985	VACASQ	TATGATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTgcA
			TGTGCATCTCAATGATTTTCTTGA
	oWS986	Cxxx	GATTCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
			TGcnnnnnnnTGATTTTCTTGATAAAAAAGA
	oWS990	VQCQSQ	
	0005991	VQCAAQ	
	-\\\\C\002		
	0112992	VQCAIQ	
	011/5004		TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
	000000-	VQUALQ	TGTGCtctcCAATGATTTTCTTGATAAAAAAAGATCA
	oWS995	VOCAMO	TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
	0110000		TGT GCtatgCAATGATTTTCTTGATAAAAAAAGATCA
	oWS996	VQCAVQ	TCCGATGAAGAAGAACAAGGTGGCGAAGGTGTTCAA
			TGT GCtgtcCAATGATTTTCTTGATAAAAAAAGATCA
MFA1	oWS1145	CRIW	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
			TGc agaATTtggTAGTTTCTGCGTACAAAAACGCGT
	oWS1153	CRVG	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
		.	
	oWS1155	CALI	
	0)NO11EC		
	00051150	CAVA	
	0\\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CAGE	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
	00001137	UA01	TGc GcTagTttTTAGTTTCTGCGTACAAAAACGCGT
	oWS1166	CVLS	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
	01101100	0120	TGc GTTtTgtCTTAGTTTCTGCGTACAAAAACGCGT
	oWS1167	CVLG	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
			TGc GTTtTgGgTTAGTTTCTGCGTACAAAAACGCGT
	oWS1168	CALL	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
			TGc GcTtTgttgTAGTTTCTGCGTACAAAAACGCGT
	oWS1169	CTLC	
	-\\\\04470		
	00051170	CSVM	
	0\/\\\\$1211	COLO	
	00031211	0313	
	o\WS1210	CWGG	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
	5001210	51100	TGc tggggTGgTTAGTTTCTGCGTACAAAAACGCGT
	oWS1212	CVCL	AACTĂTĂTTĂTCAAAGGTGTCTTCTGGGACCCAGCA
	-		TGcGTTtgTttgTAGTTTCTGCGTACAAAAACGCGT
	oWS1213	CSFN	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
			TGc tcTtTTaaTTAGTTTCTGCGTACAAAAACGCGT
	oWS1214	CQIS	AACTATATTATCAAAGGTGTCTTCTGGGACCCAGCA
			TGccaaATTtCTTAGTTTCTGCGTACAAAAACGCGT

 Table S3.
 PCR oligonucleotides used to mutate YDJ1 and MFA1 genes.

^a Reverse PCR oligonucleotide paired with *YDJ1* and *MFA1* mutagenic oligonucleotides. ^b NA – not applicable

^c n reflects random incorporation of A, C, G or T during synthesis; lowercase letters indicate positions different than the wildtype *YDJ1* or *MFA1* sequences in pWS942 and pWS610, respectively; bold TGT and TGC represent the position of the cysteine codon within the Cxxx encoding sequence.

Table S4. Categorization of 153 sequences recovered by Ydj1p-based

|--|

CASQ-like ^a			CASQ-lik	(weak)	CVIA-like
CAAG	CISN ^b	CSHV	CAHI	CLSI ^b	CAGF
CAGH	CISS ^b	CSQS	CAPQ	CLYT	CALL
CAGQ [♭]	CKSQ	CSQT	CAVG	CMYS⁵	CALT
CAGT	CKYS⁵	CSQV	CDFI	CNQH	CAVA
CAGV (2)	CLAS	CSQY	CDLG	CNYQ	CQIS
CANI	CLNQ ^D	CSST (3) ^c	CDLT	CPVD ^D	CRIW
CAPL	CLST	CSSV (4) ^c	CDMS	CRSQ	CRVG
CASQ	CNAQ	CSTI	CDMV	CRSV	CSFN
CASS	CNSS [▷]	CSTS [▷]	CDQM	CRTA	CSIS (2)
CASV	CNTV	CSTT (2)	CDVG	CSAV (2) ^c	CTLC
CATG	CPNV	CTES ^c	CDVV	CSFE [♭]	CVCL
CAVH	CPQI	CTGV	CEVG ^D	CSGV	CVLG
CAVQ ^D	CPSA	CTHA	CEYG	CSPI	CVLS (2)
CDID	CPST	CTPG [₿]	CFAL	CSSM	CWGG ^Ď
CDLN ^b	CPSV ^b	CTPI	CFNG	CTAY	CVIA-like (weak)
CDTH	CRGS (2) ^c	CTPS [▷]	CFNS	CTIR⁵	CSVM
CEHL	CRGV (2)	CTSH	CGGW	CTPV	
CESV (3)	CRHA	CTSN	CGLH	CTSI (2)	
CEVQ	CRNV ^b	CTSQ [♭]	CGNS	CTSV	
CGAV	CRPL	CTYS (2)	CGQN ^b	CVAT	
CGHA [♭]	CRST [₿]	CVAN <u>(</u> 2) ^c	CGSH [♭]	CVGI	
CGLD	CSAG	CVDH [♭]	CHTQ	CVGL (2)	
CGLL	CSAI	CVES		CVGV	
CGQV (2)	CSAN	CVGS	CIQN ^b	CVGY ^b	
CGVE <u>(</u> 2) ^c	CSAS	CVNT	CIYG	CVQT ^b	
CGVQ [₽]	CSEQ	CVSA	CKIE	CVSI	
CHTG [₽]	CSHA	CYSV ^c	CKYA	CVTS	
CHVD			CLNV	CVVR	

^a Groups are based on thermotolerance score; see Figure S2 for average score of individual sequences; see Table 1 for distribution of scores. The CASQ-like group includes the CASQ and CAVQ sequences independently identified during screening. Values after certain sequences represent the number of instances the indicated sequence was recovered as a hit (if greater than one). Unless otherwise noted, the sequence was recovered using the $ydj1\Delta$ ste14 Δ background.

5

^b This sequence was identified using the $ydj1\Delta$ background.

^c This sequence was identified independently using the *ydj1* Δ and *ydj1* Δ ste14 Δ backgrounds.

Locus ID	Gene	Motif	PS ^D	CS	Locus ID Gene Motif PS C
Strongly Prenyl	ated / Strongl	y Cleaved			Weakly Prenylated / Strongly Cleaved
YML116W	ATR1	CTVA	0	3	YOR257W CDC31 CTDS -1
YLR229C	CDC42 ^ª	CAIL	0	2	Weakly Prenvlated / Weakly Cleaved
YIR032C	DAL3	CIII	0	2	YGR068C ART5 CDDD -1 -
YIR007W	EGH1	CVIS	0	3	YGL263W COS12 CNDV -1 -
YML006C	GIS4	CAIM	0	3	YBR042C CST26 CFIF -1
YJL062W	LAS21	CALD	0	1	YBR033W EDS1 CFFN -1 -
YDR461W	MFA1 ^a	CVIA	0	3	YCR020C PET18 CYNA -1 -
YNL145W	MFA2 ^a	CVIA	0	3	YOR242C SSP2 CIDL -1
YOR101W	RAS1 ^a	CIIC	0	3	YML041C VPS71 CRNR -1 -
YNL098C	RAS2 ^a	CIIS	Ő	3	YJL059W YHC3 CRME -1
YJL204C	RCY1	CCIM	0	2	YBR096W CSEI -1 -
YCR027C	RHB1	CSIM	0	2	YIL134C-A CAPY -1 -
YPR165W	RHO1 ª	CVLL	0	2	YPL109C CPNY -1 -
YNL090W	RHO2 ^a	CIIL	0	2	YDL186W CHHD -1 -
YII 118W	RHO3 ^ª	CTIM	0	3	YMR187C CKGE -1 -
YKR055W	RHO4 ^ª	CIIM	0	3	Not Prenvlated
YNI 180C	RHO5 ^a	CVII	0	2	YMR300C ADE4 CADY -2 -
YGR152C	RSR1 ^ª	CTI	Ő	2	YPR093C ASR1 CHDF -3 -
YBI 061C	SKT5	CVIM	Ő	3	YOR299W BUD7 CYDA -2 -
YJR086W	STE18 ^a	CTLM	Ő	3	YDR301W CET1 CQGK -3 -
YI R090W	XDJ1	QICC	0	2	YOR031W CRS5 CFKC -2 -
YCR004C	YCP4	CTVM	Ő	3	YHR053C CUP1-1 CSGK -2 -
YKI 196C	YKT6 ^a	CIIM	Ő	3	YHR055C CUP1-2 CSGK -2 -
YDL009C		CAVS	Ő	3	YNI 255C G/S2 CPKA -2 -
YDL022C-A		CSII	Ő	1	YDR528W HIR1 CTRK -4 -
YEL066C		CCVC	Ő	2	YML075C HMG1 CIKS -2
YGI 082W		CVIM	Ő	3	YOR231W MKK1 CWKD -3 -
YJI 118W		CCCS	Ő	1	YMR158W MRPS8 CRVK -2 -
YJR128W		CMMI	0	1	YMR023C MSS1 CIGK -2 -
YNI 234W		CSIM	0	2	YDR307W PMT7 CLAK -2 -
YOL014W		CIII	Ő	2	YGL045W RIM8 CDDY -2 -
YPI 191C		CVVM	0	3	YDR257C <i>RKM4</i> CVKK -4 -
Strongly Prenyl	ated / Weakly	Cleaved	-	-	YBR150C TBS1 CVKM -2
YGR282C	BGL2	CDFS	0	0	YBR209W CSKP -4 -
YDR261C	EXG2	CASL	0	-1	YKL069W CVFK -2 -
YNL106C	INP52	CDPN	0	-3	YLR154C-G CDGP -2 -
YJR107W	LIH1	CSGL	0	-2	YOR034C-A CQRK -5 -
YKL176C	LST4	CNAG	0	-2	
YBL049W	MOH1	CKCT	0	-1	
YKR048C	NAP1 ^a	CKQS	Ō	-1	
YDL065C	PEX19 ^ª	CKQQ	0	-1	
YBL018C	POP8	CKCI	0	-1	
YBR087W	RFC5	CCLD	0	0	
YMR060C	SAM37	CKYI	0	-2	
YGL169W	SUA5	CIQF	0	0	
YJR066W	TOR1	CPFW	0	-2	
YKL203C	TOR2	CPFW	0	-2	
YNL064C	YDJ1 ^a	CASQ	0	0	
YDR034W-B		CDVF	0	0	
YFL065C		CCPS	0	-1	
YHL049C		CCPS	0	-1	
YMR265C		CSNA	0	-1	
YMR272W-B		CMYV	0	-1	
YOL164W-A		CIHH	0	-2	
YPR203W		CCPS	0	-1	

Table S5. Categorization of yeast Cxxx proteins by predicted prenylation and cleavage status.

^a Known to be farnesylated, geranylgeranylated or highly likely to be prenylated based on similarity to a homolog.

^b PS – in-house algorithm prenylation score; CS – in-house algorithm cleavage score;

see Materials and Methods for description of scoring systems.

Species	% Identity	COOH-terminus
S. cerevisiae (Ydj1p)	100.0	VQCASQ
K. lactis	73.2	VQCASQ
A. gossypii	71.4	VQCASQ
S. pombe	55.6	VQCAQQ
N. crassa	53.1	VQCASQ
M. oryzae	52.0	VQCASQ
G. gallus	51.5	VQCAHQ
M. musculus	50.9	VQCAHQ
H. sapiens	50.5	VQCAHQ
D. rerio	50.1	VQCAHQ
X. tropicalis	50.1	VQCAHQ
O. sativa	48.1	VQCAQQ
A. thaliana	47.3	VQCAQQ
C. elegans	45.7	VRCQHQ

Figure S1. COOH-terminal sequences of Ydj1p and related homologs.

"Ydj1" was used as a query to retrieve related sequences and overall percent identity scores from the Homologene database (<u>http://www.ncbi.nlm.nih.gov/homologene</u>). Only the last 6 amino acids of each homolog are shown. The retrieved list of homologs was culled to reduce over-representation of mammalian homologs and to limit each species to one representative when multiple entries were found. When multiple entries were observed, the homolog with the highest identity score relative to Ydj1p was retained.

FIGURE S2a. Berger et al.

	25 °C	37 °C	40 °C	41 °C	<u>average T score</u>
CASQ		Ó Ó O Ø Ö	چ ک ک ک ک	• • • • * *	5.00 ± 0.07 (n=101)
CVIA	🍯 🔵 🏟 🐡	• • • •			3.01±0.11 (n=88)
SASQ	•••	🕒 🕐 🕘 🏐 Ui			0.99±0.09 (n=29)
CLAS				8 8 6 0	4.81±0.40 (n=4)
CESV					4.88±0.34 (n=4)
CAPI					4.75 ± 0.45 (n=4)
CTHA		• • • • •			4.69±0.48 (n=4)
CGVE					4.69 ± 0.48 (n=4)
CSAN					4.69±0.48 (n=4)
CNTV					4.69±0.48 (n=4)
CGLL				. • • • • • ·	4.75 ± 0.45 (n=4)
CGQV				00000	4.89±0.32 (n=9)
CEVQ					4.55 ± 0.51 (n=5)
CASV					4.55 ± 0.51 (n=5)
CIYG					3.80 ± 0.77 (n=5)
CAVG					3.65 ± 0.59 (n=5)
CVGL				• • • •	4.45±0.51 (n=5)
CAGV					4.69±0.47 (n=9)
CSTI				O O O G 4.	4.75 ± 0.45 (n=3)
CLST					4.81±0.40 (n=4)
CVNT					4.88 ± 0.34 (n=4)
CPNV					4.81±0.40 (n=4)
CAGV	•••				repeat; see above
CAGT	• • • • • •				4.69±0.48 (n=4)
CDLT	· • • • • • *			••••	4.25 ± 0.68 (n=4)
CVSA	•••*		•••*		4.75±0.45 (n=4)
CASS	•••••	••••			5.00±0.00 (n=4)
CHVD	ی ہے وہ و	••••			4.69 ± 0.48 (n=4)
CASQ	••••		* * *		4.56±0.51 (n=4)
CAAG			* * * •		4.75 ± 0.45 (n=4)
CTSV	•••		•••		4.19±0.66 (n=4)
CFNG			••••		4.25 ± 0.58 (n=4)
CRSV	🎨 🌒 🌒				4.31±0.48 (n=4)
CEYG	• • • • • *				4.31±0.48 (n=4)
CSQY		.****			4.75±0.45 (n=4)
CSTT			• • • • • •		4.82±0.39 (n=7)
CSQS		* * • • •			5.00±0.00 (n=3)
CTGV					4.92±0.29 (n=3)
CSEQ			●. ● ● ● ◆		4.75±0.45 (n=3)
CRIW			• • • •		2.75 ± 0.45 (n=3)
CRTA					4.42±0.51 (n=3)
CNQH					4.42±0.51 (n=3)
CSAI					4.67±0.49 (n=3)
CSHV			4		5.00±0.00 (n=3)
CRPL	• • • • •				4.92±0.29 (n=3)
CPST			ېنېږو کې کې کې کې	O O O O O O	4.92±0.29 (n=3)
CRSQ					4.42±0.51 (n=3)
CVGI					4.17±0.39 (n=3)
CSAV		••••		• • • • •	4.25 ± 0.45 (n=3)
CTYS	,			•••	4.71±0.46 (n=7)

FIGURE S2b. Berger et al. (continued)

	25 °C	37 °C		4	0°C			41	°C	<u>average</u> T	score
CASQ		6 6 6 6	23.5		00	-	0	0.0	1 4	5.00 ± 0.07	′ (n=101)
CVTA		······································	1	00			0		1 a 2	3.01 ± 0.11	(n=88)
SASO			2 - 2		S. 37					0.99 ± 0.09) (n=29)
				• •	a				in	1 71 + 0 40	(n-7)
CITS									100	4.71 ± 0.46	b (n=7)
CDVV			5.23		1	V.6	0	•		4.31 ± 0.48	s (n=4)
CSQV			25		● 袋	64	•	• •	1 (i) iy	4.69 ± 0.48	s (n=4)
CVGS			5.4		0 3		•		· · · · · · · · · · · · · · · · · · ·	4.50 ± 0.52	(n=4)
CDLG			14			See.	•			4.25 ± 0.68	3 (n=4)
CSSM			Sec.		• *	12	•			4.13 ± 0.62	2 (n=4)
CNAQ			· · ·	• •	48	10			参 徐	4.50 ± 0.52	2 (n=4)
CTPI						12		•	1 1	4.75 ± 0.45	5 (n=4)
CAVH) 🔍 🔍 🌒 🔪	` @ @ @ [.]			۱ ک	4.		00	33 . · ·	4.50 ± 0.52	2 (n=4)
CVAT	. • • • •		2.5		9 🏟	- 20				3.94 ± 0.57	' (n=4)
CGGW) 🕘 🕘 🍭 🗮		·	\bigcirc	•	7.) 🛞 🗠	4.00 ± 0.63	8 (n=4)
CDVG		•	÷.			4.		00	· · · ·	4.44 ± 0.51	(n=4)
CDQM			and a star	00				0.0	@ ·:	4.31 ± 0.48	3 (n=4)
CTSI						4		•	1977 - 24	3.94 ± 0.44	(n=4)
CGNS			-		()	-)	3.88 ± 0.50) (n=4)
CDID						1				4.63 ± 0.50) (n=4)
			2/// 8			~			3 Y	1 01 + 0 25	(n-4)
CTAV			ā.		1	.3.8			A &	4.94 ± 0.23 3.75 ± 0.58	(n-4)
CUCV			day i			5.			A 3	3.75 ± 0.56	(n-4)
						.Sie			Sta in	4.51 ± 0.40	(n-4)
CAUT			*** 132		9 77 Ar da	2° 4/2			See	4.30 ± 0.32	(11-4)
CARL			295° . 275							4.23 ± 0.43	(11-4)
CVIS			2017 			-25				3.00 ± 0.34	(11-4)
CNYQ			245 194			-51				4.15 ± 0.54	(11-4)
CGAV			2			Al al	Z.	<u>v</u> ę		5.00 ± 0.00) (n=4)
CSQT			<u>.</u>			-			St 37	4.83 ± 0.39	9 (n=3)
CTSH			3			-	•			4.75 ± 0.45	5 (n=3)
CFAL						-				3.92 ± 0.67	/ (n=3)
CTPV			13.			07))	St. 19.	4.25 ± 0.45	5 (n=3)
CAPQ	D• O• O @ 4			$\bullet \bullet$		-	•	Ó Ó	19 ···	4.33 ± 0.49	9 (n=3)
CSPI	D 🛛 🗢 🧶 🕅		1			-32	۲			4.00 ± 0.00) (n=3)
CKSQ			57	$\bullet \bullet$		() () ()	۲	0 0		4.67 ± 0.49	∂ (n=3)
CSAS	🕑 🍏 🌒 🏟 🖏	r 🖉 🔵 🔍 🤅 🤅				1			() ()	4.83 ± 0.39	∂ (n=3)
CVAN				\bullet	•	-	0	•	(帝) 王	4.89 ± 0.31	(n=7)
CSAG) 🕘 🕘 🌒 🌾					14:	۲	• •	1 1/2	4.88±0.34	↓ (n=4)
CSHA) 🕘 🕘 🏶 👻		\$2	••	•	14		• •	\$ \$	4.81±0.40) (n=4)
CSSV) 🜒 🌒 🏶 💠		3		•			•	A	4.75 ± 0.44	↓ (n=7)
CDMS () 🗩 🕘 🕸 🕫		· ** .			1	•	•		4.06 ± 0.25	5 (n=4)
CLYT			(e) -	• •	•	11	•	•		4.06 ± 0.25	5 (n=4)
CSGV			-		•	3.55	•	o 0	@ \$}	4.31 ± 0.48	3 (n=4)
CATG			sir.			1				5.00 ± 0.00) (n=4)
СЕНІ			*	00	0 4					1 75 + 0 / 5	(n=4)
CCTT			1.1	00		-			4 14	+./J ± 0.43	nanel S2c
CDCV			.5	00	a 2	34			a .:	475 + 0.15	(n=4)
									1 10 Se	301 ± 0.43	(n-4)
			10			5:			En es	1 50 + 0 51	(n=4)
			21 201			10			199 - 194 - 199 - 194	4.30±0.32	(n-4)
									199 N.	4.23±0.43	(n-4)
									199 (A) 1980 (A)	1 01 ± 0 25	(n-4)
COLD					99			00	14° 31	4.94 ± 0.23	, (II- II)

FIGURE S2c. Berger et al. (continued)

FIGURE S2d. Berger et al. (continued)

Figure S2. Phenotypes and isoprenylation status of Ydj1p Cxxx mutants identified by thermotolerance selection.

Ydj1p Cxxx mutants were evaluated for their ability to support growth of a $ydj1\Delta$ strain at indicated temperatures as described for Figure 1. For clarity, only one representative dilution series is shown for each Cxxx mutant, including the reference controls that are replicated on different pages associated with this data set. The dilution series associated with the first 8 Ydj1p Cxxx mutants were used for Figure 2D. The thermotolerance profile of each dilution series was scored by 4 independent observers (range 1-5), where SASQ, CVIA and CASQ controls were set to values of 1, 3 and 5, respectively. Multiple replicates (not shown) were scored for each mutant, and scores were averaged to generate a thermotolerance (T) score and standard deviation. The total number of replicates evaluated follows the T score. Two independent yeast transformant colonies were scored for most analyses (n=136); only one transformant was scored in the remaining cases (n=17).

Figure S3. *Impact of carboxylmethylation on thermotolerance properties of CVIA-like Ydj1p Cxxx mutants.*

The indicated Ydj1p Cxxx variants were expressed in $ydj1\Delta$ yeast with or without the Ste14p isoprenylcysteine methyltransferase (+ and -, respectively) and assessed for thermotolerance as described for Figure 1C, except that recovery at room temperature was for two days instead of one. Only the 41 °C condition is shown.

Figure S4. The predicted prenylation potential of individual Ydj1p-based hits.

A) Hits were matched to a score derived from a Ras-based enrichment strategy for prenylatable sequences and graphed based on score (Stein *et al.* 2015). Hits are binned into 2 categories: high enrichment in screen (i.e. score greater than 3), and low enrichment (i.e. score less than 1); intermediate scores were not observed (i.e. score 1-3). **B**) Hits were matched to a score derived using a prenylation prediction algorithm (London *et al.* 2011). Hits are binned into 3 probability categories: high (i.e. scores less than -1.1); ambiguous (i.e. scores -1.1 to -0.4); low (i.e. scores greater than -0.4). **C**) Hits were matched to a score derived using the PrePS server (London *et al.* 2011). Hits are binned into 3 probability categories: high (i.e. scores more than 0); ambiguous (i.e. scores between 0 and -2); low (i.e. scores less than -2). For all graphs, scores were plotted such that sequences with the highest prenylation probability are at the top of each graph; the relative position of CASQ is noted (triangle).