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1. Calculations used to derive PC conditioning bias

We use the same notation and data as in the main text:

• Y ∈ RN×P is the phenotype matrix (N ≤ P ). We use the model

Y = xαT + Y 0

• Y 0 ∈ RN×P is the noise matrix

• x ∈ RN×1 is the covariate of interest

• α ∈ RP×1 is the vector of effect sizes for x

• U ∈ RN×N , λ ∈ RN , and V ∈ RP×N are defined as the SVD

1
√
p
Y = Udiag(λ)V T

we define U0, λ0, and V 0 analogously for Y 0

• We also use the inverse eigengaps
cj := 1

λ1 − λj

• Confounders are not discussed in this document but can be modelled without loss of generality as components of the
general noise matrix Y 0.

A. Equation 7: two stage least squares. We first evaluate a few helpful terms using the first-order approximation to u1
developed in equation 6 in the main text:

xTu1 = x̃1 + a
∑
j>1

cj x̃j(ỹ1qx̃j + ỹjqx̃1) +O(a2)

yT
p u1 = ỹ1p + a

∑
j>1

cj ỹjp(ỹ1qx̃j + ỹjqx̃1) +O(a2)

xTu1y
T
p u1 = x̃1ỹ1p + a

∑
j>1

cj(x̃2
1ỹjpỹjq + x̃2

j ỹ1pỹ1q + x̃1x̃j(ỹjpỹ1q + ỹ1pỹjq)) +O(a2)

We use these terms to expand the two-stage least squares expression for α̂:

α̂p =
yT

p x− yT
p u1x

Tu1

N − (xTu1)2

=
(yT

p x− yT
p u

0
1x

Tu0
1) + (yT

p u
0
1x

Tu0
1 − yT

p u1x
Tu1)

N − (xTu1)2

= N − (xTu0
1)2

N − (xTu1)2

(
α̂0

p −
a
∑

j>1 cj(x̃2
1ỹjpỹjq + x̃2

j ỹ1pỹ1q + x̃1x̃j(ỹjpỹ1q + ỹ1pỹjq))
N − (xTu0

1)2

)
+O(a2)

= α̂0
p(1 + γ)− a(1 + γ)

N − x̃2
1

(
x̃2

1

∑
j>1

cj ỹjq ỹjp + x̃1
∑
j>1

cj x̃j(ỹjq ỹ1p + ỹ1q ỹjp) + ỹ1q ỹ1p

∑
j>1

cj x̃
2
j

)
+O(a2)
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The last line introduced γ, which is defined as

γ := (xTu1)2 − (xTu0
1)2

N − (xTu1)

Using the fact that γ = O(a), derived in Section 1C, this gives the bias approximation

Biasp = α̂0
pγ −

a

N − x̃2
1

(
x̃2

1

∑
j>1

cj ỹjq ỹjp + x̃1
∑
j>1

cj x̃j(ỹjq ỹ1p + ỹ1q ỹjp) + ỹ1q ỹ1p

∑
j>1

cj x̃
2
j

)
+O(a2) [1]

We now assume γ is approximately negligible, which follows from a central limit theorem approximation used below in
Section 1C, to write

Biasp ≈ −
a

N − x̃2
1

(
x̃2

1

∑
j>1

cj ỹjq ỹjp + x̃1
∑
j>1

cj x̃j(ỹjq ỹ1p + ỹ1q ỹjp) + ỹ1q ỹ1p

∑
j>1

cj x̃
2
j

)
We now drop middle term inside the parentheses that sums terms proportional to x̃1x̃j . These summands are each products

of normal random variables with mean zero and only have standard deviation cj(ỹjq ỹ1p + ỹ1q ỹjp). In contrast, the summands
in the third term in the parentheses have mean cj ỹ1pỹ1q and variance 2c2

j ỹ
2
1pỹ

2
q1. By the central limit theorem, for large N

the comparison simplifies to comparing a N
(

0,
∑

j>1 c
2
j

(ỹjq ỹ1p+ỹ1q ỹjp)2

ỹ2
1q

ỹ2
1p

)
to a N

(∑
j>1 cj ,

∑
j>1 c

2
j

)
. We say the former is

negligible because it has mean zero and its standard deviation is smaller than the mean of the latter:√∑
j>1

c2
j

(ỹjq ỹ1p + ỹ1q ỹjp)2

ỹ2
1q ỹ

2
1p

≈ ‖c−1‖2 ≤ ‖c−1‖1

The inequality is fully general and in our case holds loosely: in the GEUVADIS data (described below) and Marchenko-Pastur
spectra with the same aspect ratio, ‖c−1‖1

‖c−1‖2
is 19.3 and 9.1, respectively. Marchenko-Pastur is a useful reference distribution

for the singular values from an unstructured matrix, as it is almost surely the limiting spectral measure for entry-wise i.i.d.
random matrices as their dimensions increase to ∞ with a fixed aspect ratio.

The above approximation assumes

ỹjq ỹ1p + ỹ1q ỹjp

ỹ1q ỹ1p
=
√
λj√
λ1

VjqV1p + V1qVjp

V1qV1p
≤ 1

which is reasonable so long as entries of V are bounded away from zero; further, we only require the inequality on average over
j (after weighting by c2

j ).
Dropping the middle summand and the term in γ simplifies the bias expression considerably, giving

Biasp ≈ −
a

N − x̃2
1

(
x̃2

1

∑
j>1

cj ỹjq ỹjp + ỹ1q ỹ1p

∑
j>1

cj x̃
2
j

)

= −2ac̄ N − 1
N − x̃2

1

(∑
j>1

wx̃
j ỹjq ỹjp + wx̃

1 ỹ1q ỹ1p

)

≈ −2ac̄
N∑

j=1

ỹjpỹjqw
x̃
j [2]

As in the main text, the weights wx̃ and c̄ are defined by

wx̃
1 :=

∑
k>1 ckx̃

2
k

2(N − 1)c̄ ; wx̃
j := cj x̃

2
1

2(N − 1)c̄ c̄ := 1
N − 1

∑
j>1

cj

The approximation in Eq. (2) uses
1

N − x̃2
1
≈ 1
N − 1

(
1 + x̃2

1 − 1
N − 1

)
≈ 1
N − 1

which is correct to first order in the random variable x̃2−1
N−1 , which has mean zero and variance 2

N−1 .
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B. c̄ approximation. We drop the superscript from λ0 for this subsection.
We require a strong assumption that λ1 � λ2 for our first approximation below. Unfortunately, K eigenvalues will be

large compared to all other if there are K strong confounders, so this approximation will be worse for more realistic data.
In Supplementary Figure 11, for example, the top singular value is roughly 1.5 times larger than the second. Regardless, a
regression conditioning on K PCs would presumably instead require the last N −K to be small, which is far mot attainable.
In fact, it automatically holds if K is chosen, for example, as an elbow of the {λ} scree plot, which is very common in practice.
Finally, these approximation are the last step in our overall bias calculation, and serve primarily to reduce our expression into
interpretable forms–greater approximation accuracy can be achieved leaving the approximation in terms of the (inscrutable)
parameter c̄.

So, assuming λ1 � λ2,

c̄ := 1
N − 1

∑
j>1

1
λ1 − λj

≈ 1
(N − 1)λ1

∑
j>1

(
1 + λj

λ1

)

= 1
(N − 1)λ1

N − 1 +

(∑N

j=1 λj

)
− λ1

λ1


≈ 1
λ1

(
1 + N − λ1

(N − 1)λ1

)
≈ 1
λ1

[3]

This used the approximation that
∑N

j=1 λ1 = N . This approximation is not very good–writing λ as a length-N vector,
N = ‖λ‖2

1 ≤ ‖λ‖2
1, with approximate equality only when λ1 �

∑
j>1 λj , a much stronger condition than λ1 � λ2. However,

unlike other approximations, this one is guaranteed to be conservative (in the sense that the true c̄, and thus the resulting bias
approximation, is even larger than our provided approximation), and so we do not overly worry about accuracy.

We note that
∑N

j=1 λ
2
j = ‖λ‖2

2 = N because we assumed the matrix Y is normalized to have columns with mean zero and
variance 1, giving

N∑
j=1

λ1 = tr
( 1
P
Y TY

)
= 1
P

∑
i,p

Y 2
ip = 1

P

∑
p

‖Y,p‖2
2 = N

C. Simplifying computations for γ. Defining and simplifying γ gives

γ := N − x̃2
1

N − (xTu1)2 − 1

= 1
1− 2ax̃1

∑
j>1 cj x̃j(ỹ1qx̃j + ỹjqx̃1)(N − x̃2

1)−1 +O(a2)
− 1

= 2ax̃1
∑
j>1

cj x̃j(ỹ1qx̃j + ỹjqx̃1)(N − x̃2
1)−1 +O(a2)

= 2a
N − x̃2

1

(
x̃2

1

∑
j>1

cj ỹjqx̃j + x̃1z1q

∑
j>1

cj x̃
2
j

)
+O(a2)

≈ 2ax̃1ỹ1q c̄

The last line uses the approximations that N−1
N−x̃2

1
≈ 1 and replaces the sums over j by their expectations, which is reasonable as

∑
j>1

cj x̃
2
j ∼ N

(
(N − 1)c̄, 2

∑
j>1

c2
j

)
[by CLT]

∑
j>1

cj ỹjqx̃j ∼ N

(
0,
∑
j>1

c2
j ỹ

2
jq

)
The CLT approximation should be good unless a very small number of eigenvalues (other than the first) are far larger than the
rest, similar to our requirement for the c̄ approximation that λ1 � λ2 (but weaker).

Using Eq. (3) to simplify c̄, γ can then be approximated by

γ ≈ 2ax̃1Vq1

√
P√
λ1

[4]

In practice, this term is negligible: a is assumed small, Vq1 is on the order of P−1/2, and
√
λ1 tends to be large in real data,

e.g. 8 in GEUVADIS.
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D. PCA on residuals. To derive the condition for the inequality σ̂2
cond ≤ σ̂2

cond,

σ̂2
cond = 1

N − (K + 1)‖
(
I − xxT − UUT

)
yp‖2

= N − 1
N − (K + 1) σ̂

2
uncond −

1
N − (K + 1)‖U

T yp‖2

= σ̂2
uncond + 1

N − (K + 1)

(
Kσ̂2

uncond − P
K∑

k=1

λkV
2

pk

)

When Y has i.i.d. entries and N and P are large, we use the approximation PVp,1:K
iid∼ χ2

1. Then

σ̂2
cond = 1

N − (K + 1)‖
(
I − xxT − UUT

)
yp‖2

= N − 1
N − (K + 1) σ̂

2
uncond −

1
N − (K + 1)‖U

T yp‖2

= σ̂2
uncond + 1

N − (K + 1)

(
Kσ̂2

uncond − P
K∑

k=1

λkV
2

pk

)
This holds on average over x and choice of gene p,

E

(
σ̂2

uncond −
P

K

K∑
k=1

λkV
2

pk

)
= 1− 1

K

P∑
p=1

K∑
k=1

λkV
2

pk = 1− 1
K

K∑
k=1

λk ≤ 0

using the fact that Y is column-standardized, so E
(
σ̂2

uncond

)
= 1.

We also empirically evaluate the probability the t-statistic is inflated by simulating σ̂2
uncond ∼ χ2

1 and, independently,
PV 2

pk
iid∼ χ2

1. We repeat the simulation 10,000 times for different choices of V and K and plotted the fraction of simulations
where tuncond < tcond. The probability of inflation is always above 50%; peaks in the range of K used in practice (roughly, 5
to 20); and increases for more highly dispersed (i.e. realistic) eigenvalue spectra.

2. Accuracy of the approximations

We used the GEUVADIS data, described in the main text, as our Y 0 matrix to empirically assess the quality of the above
approximations. We simulated 1,000 independent datasets from the model

Y ∼ xαT + YGEUVADIS
x

iid∼ N (0, 1)
α = aeq = (0, . . . , a, . . . , 0)
q ∼ Unif ({1, . . . , P})
a ∈ {.0001, .001, .01, .1, .5}

For each dataset, we compute the bias α̂p − α̂0
p for each gene p 6= q and our theoretical approximations to this bias. We then

regress the observed biases on the theoretical biases, storing the regression coefficients and R2.
The median R2 is greater than .9999 for all a for both the “full” approximation given in Eq. (1) and the simplest approximation

given in Equation 9 of the main text, i.e.
Bias−p ≈ aVp1V−p1

The empirical distribution of these regression coefficients is shown in Figure 2. The median coefficients are always negligibly
far from 1, though the empirical 95% confidence intervals are nontrivial. These observations suggest our bias approximation is
off by a scale factor near one, possibly because higher-order terms also predominantly scale in Vp1Vq1. We have not pursued
more accurate approximations as the goal is only to demonstrate the existence and qualitative behavior of the bias; moreover,
where the perturbation is truly small, we show in simulations below that the resulting bias is essentially negligible.

Overall, the final approximation given in Equation 9 of the main text appears to be a very good estimator, despite depending
only on a, q and V,1.
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2 � w2, especially in the real GEUVADIS data.
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Fig. 4. False positive rates for a simulated, strong, trans-effect added to the GEUVADIS expression using a p-value threshold of 0.01. Three parameterizations for the causal
effect α are shown. FPR is shown on the non-logged scale so that ICE is visible.
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Fig. 5. True positive rates for a simulated, strong, trans-effect added to the GEUVADIS expression using a q-value threshold of 0.01. TPR is not the same as power for
approaches that fail to control the FPR.
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Fig. 6. False positive rates for a simulated, strong, trans-effect added to the GEUVADIS expression using a q-value threshold of 0.01. Three parameterizations for the causal
effect α are shown. Using q-values rather than p-values seems to help PEER more than SVA.
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Fig. 8. False positive rates at a q-value threshold of .01 for testing a strong covariate x that is correlated with an unobserved confounder u. The squared correlation between x
and u, ρ2, is on the x-axis, and their respective transcriptome-wide variances explained are σ2

x = 1% and σ2
u = 10% (left) or σ2
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Fig. 9. False positive rates (on log scale) at a nominal significance threshold of .001 for testing a strong covariate x that is correlated with an unobserved confounder u. The
squared correlation between x and u, ρ2, is on the x-axis, and their respective transcriptome-wide variances explained are σ2
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u = 10% (left) or σ2

u = 40%
(right).
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Fig. 10. True positive rates at a q-value threshold of .01 for testing a strong covariate x that is correlated with an unobserved confounder u. The squared correlation between x
and u, ρ2, is on the x-axis, and their respective transcriptome-wide variances explained are σ2
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u = 10% (left) or σ2

u = 40% (right).
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Fig. 11. Singular-value spectrum of our process gene expression matrix from GEUVADIS. M-P refers to the Marchenko-Pastur distribution with asymptotic aspect ratio matching
the GEUVADIS data.
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