1 SUPPLEMENTARY INFORMATION

2

Table S1: MLP and CNN hyperparameters together with value ranges optimized with a genetic
 algorithm.

Hyperparameter	Values	Utility	Potential issues
Number of layers	[1, 2, 3, 4, 5]	The bigger the number, the higher the flexibility.	It increases the number of weights to learn, increasing computing time and memory cost.
Neurons per layer	[16, 32, 64, 128]	The bigger the number, the higher the flexibility.	It increases the number of weights to learn, increasing the time and memory cost.
Convolutional kernel width*	[2, 3, 5, 10]	A larger kernel allows learning more complex patterns.	A smaller kernel has the risk to underfit while a large one suffers the risk of overfitting.
Optimizer	['rmsprop', 'adam', 'sgd', 'adagrad', 'adadelta', 'adamax', 'nadam']	Optimization algorithms for training deep models includes some specializations to solve different challenges	There is no consensus about which algorithm performs the best.
Activation	['relu', 'elu', 'tanh', 'sigmoid', 'hard_sigmoid', 'softplus', 'linear']	Makes possible to learn non-linear complex functional mappings between the inputs and response variable.	There is no best activation function.
Weight regularization	[0.01, 0.15, 0.225, 0.3]	Decreasing the weight regularization allows the model to fit the training data better.	Low value may cause overfitting.
Dropout	[0.01, 0.15, 0.225, 0.3]	A higher dropout helps to reduce overfitting.	Information is lost when nodes are ignored by a high dropout.

5 * Defined only in CNNs, it is the number of SNPs per window.

Window size	Stride	BEST	UNIF
2	1	0.336	0.263
3	1	0.432	0.249
5	1	0.414	0.259
10	1	0.405	0.269
2	2	0.425	0.240
3	3	0.418	0.245
5	5	0.406	0.254
10	10	0.391	0.234

6 Table S2: Correlation in height prediction for several SNP window sizes and strides.

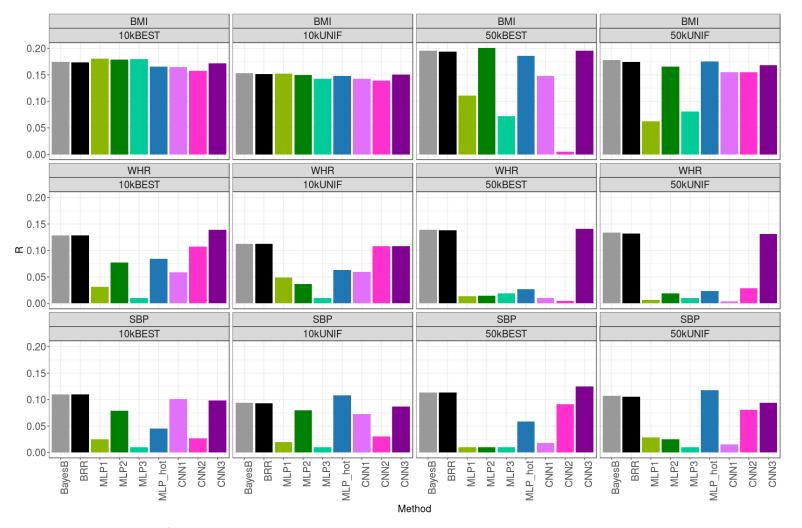
7 Results shown were obtained with CNN3 method and 10k BEST SNP set.

8

Algorithm 1

1: I	procedure $GA(p, \beta, \delta)$					
2:	Generate p feasible solutions randomly $\rightarrow Pop$	$\triangleright \rightarrow $ is the assign function				
3:	for i=1 to δ do	$\triangleright \delta$ number of generations				
4:	for all members of Pop do					
5:	score based on fitness score	$\triangleright \mathbf{R}$ value in validation				
6:	end for					
7:	$Sel = \{\}$					
8:	$n_e = n \cdot \beta$	$\triangleright n_e$ number of elitism				
9:	$Pop_2 = \{\text{Best } n_e \text{ solutions in } Pop\}$	\triangleright Select the best n_e solutions in Pop				
10:	$Sel = Sel \cup Pop_2$					
11:	$Pop_2 = \{n_e \text{ random solutions from } Pop \setminus S\}$	Sel \triangleright Select other n_e solutions				
12:	$Sel = Sel \cup Pop_2$					
13:	Mutate some of the parameters on some of the networks in Sel					
14:	Pop = Sel					
15:	$n_c = n - Sel $					
16:	for j=1 to n_c do	\triangleright Breeding between Sel				
17:	Randomly select two solutions from Set	$l: (X_A, X_B)$				
18:	Combine a random assortment of parameters from X_A and $X_B \to X_C$					
19:	$Pop = Pop \cup X_C$					
20:	end for					
21:	end for \triangleright Each iteration thr	ough these steps is called a generation				
22:	return Pop					
23: e	23: end procedure					

- 9
- Figure S1: Genetic algorithm used for hyperparameter optimization. The genetic algorithm is defined
 with the following parameters: p, number of individuals (hyperparameter combinations) per generation;
 β, percentage of individuals selected and δ, number of generations.
- 14



17 Figure S2: Prediction performance across methods and traits. Grey, green, blue and magenta bars correspond to linear, MLPs, hot-encoding

