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EM Algorithm for an F1 Cross

1. Let (see (4))

aki`1`2 := Pr(pi = ki/K| p̃1 = `1/K, p̃2 = `2/K). (S1)

2. E-Step: Set

θi :=
π ∑K

ki=0 BB(yi|ni, ξ(ki/K, ε, h), τ)aki`1`2

π ∑K
ki=0 BB(yi|ni, ξ(ki/K, ε, h), τ)aki`1`2 + (1− π)BB(yi|ni, 1/2, 1/3)

(S2)

θ̃j :=
π BB(ỹj|ñj, ξ(`j/K, ε, h), τ)

π BB(ỹj|ñj, ξ(`j/K, ε, h), τ) + (1− π)BB(ỹj|ñj, 1/2, 1/3)
(S3)

3. M-Step: Set

π =
1

N + 2

(
θ̃1 + θ̃2 +

N

∑
i=1

θi

)
(S4)

(`1, `2, τ, h, ε) = arg max
(`1,`2,τ,h,ε)∈1:K×1:K×[0,1]×R+×[0,1]

[
N

∑
i=1

θi log
K

∑
ki=0

BB(yi|ni, ξ(ki/K, ε, h), τ)aki`1`2

+ θ̃1 log BB(ỹ1|ñ1, ξ(`1/K, ε, h), τ) + θ̃2 log BB(ỹ2|ñ2, ξ(`2/K, ε, h), τ)

− 1
2σ2

h
(log(h)− µh)

2 − log(h)− 1
2σ2

ε
(logit(ε)− µε)

2 − log(ε)− log(1− ε)

]
,

(S5)

where

ξ(pi, ε, h) =
f (pi, ε)

f (pi, ε) + h(1− f (pi, ε))
, (S6)

f (pi, ε) = (1− ε)pi + ε(1− pi). (S7)

Theorems Relating to Preferential Pairing

See Section Accounting for Preferential Pairing for notational definitions.

Theorem S1. The number of configurations m given a K-ploid parent has ` copies of A are
K
2 −

⌈
`
2

⌉
+ 1 if 2` ≥ K,⌊

`
2

⌋
+ 1 if 2` < K,

(S8)

where d·e and b·c are the ceiling and floor functions, respectively.
1Corresponding author: Department of Mathematics and Statistics, American University, 3501 Nebraska Ave NW, Don Myers Building, Washington, DC 20016-8050, U.S.A.
E-mail: dgerard@american.edu

1

mailto:dgerard@american.edu


Proof. We begin by placing as many A’s into an AA pair as possible. This is b`/2c AA pairs. In this configuration, there are K/2− d`/2e
aa pairs. We then navigate to a new configuration by subtracting 1 from m1 and m3 and adding 2 to m2. We do this until either m1 = 0
or m3 = 0. Proceeding in this way, we reach all possible configurations. Counting the number of configurations we obtained, we get
(S8).

Summing over `, we can also get a result for the total number of possible values of m not conditional on `.

Theorem S2. The total number of possible values of m is

(K + 4)(K + 2)
8

=

( K+4
2
2

)
. (S9)

Proof. The proof involves summing (S8) over ` under the two cases where K/2 is even and K/2 is odd.
We begin with the case where K/2 is even. Then the total number of elements is

2

K−2
2

∑
`=0

(b`/2c+ 1) + bK/4c+ 1 (by symmetry) (S10)

= 4
K/4

∑
i=1

i + K/4 + 1 (counting each element in summand twice) (S11)

= K(K + 4)/8 + K/4 + 1 (equation for sum of i) (S12)

=
(K + 4)(K + 2)

8
. (S13)

For the case where K/2 is odd, we have the total number of elements is

2

K−2
2

∑
`=0

(b`/2c+ 1) + bK/4c+ 1 (by symmetry) (S14)

= 2

K
2

∑
`=0

(b`/2c+ 1)− bK/4c − 1 (S15)

= 4

K+2
4

∑
i=1

i− K− 2
4
− 1 (counting each element in summand twice) (S16)

=
(K + 2)(K + 6)

8
− K− 2

4
− 1 (equation for sum of i) (S17)

=
(K + 4)(K + 2)

8
. (S18)

Theorem S3. The total possible number of pairings where chromosomes are labeled but pairings are not labeled is

(K
2)(

K−2
2 ) . . . (2

2)/(
K
2)! (S19)

Proof. The proof is very similar the proof for the derivation of combinations. First, choosing 2 chromosomes from K is (K
2), then

choosing 2 chromosomes from K− 2 is (K−2
2 ). We continue in this manner until we exhaust all of the chromosomes. We then need to

divide by the number of orderings for iteratively choosing 2 chromosomes, which is just (K
2)!.

Theorem S4. Let

f (`, m) =

{
1 if m = 0,
(`2)(

`−2
2 ) . . . (`−2m+2

2 )/m! otherwise.
(S20)

Then the number of pairings that result in a configuration m where the chromosomes are labeled but the pairings are not labeled is

f (K− `, m1) f (`, m3)m2! (S21)

Proof. First, we select the number of pairings resulting in aa and we obtain f (K− `, m1). The proof of this is very similar to the proof in
Theorem S3 so we omit the details. Similarly, the number of pairings that result in AA is f (`, m3). The number of ways we can pair the
leftovers into Aa is m2! because we first choose one of m2 A’s to pair with the first a, then m2 − 1 of the remaining A’s to pair with the
second a, and continue in this way until all A’s and a’s are paired. We then simply multiply these counts together to obtain (S21).

2 Gerard et al.



Theorem S5. If there is no preferential pairing, then the probability of configuration m is

f (K− `, m1) f (`, m3)m2!(K
2)!

(K
2)(

K−2
2 ) . . . (2

2)
, (S22)

where f (`, m) is defined in (S20).

Proof. There are (K
2)(

K−2
2 ) . . . (2

2)/(
K
2)! possible configurations where the chromosomes are labeled but the pairings are not labeled

(Theorem S3). Of those, f (K− `, m1) f (`, m3)m2! contain configuration m (Theorem S4). If each configuration, where the chromosomes
are labeled but the pairings are not, have an equal probability, then the probability of configuration m is just the ratio of these two
quantities, (S22).

Supplementary Figures
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Figure S1 Considering an autohexaploid loci, -2 standard deviations of the bias parameter under our default prior (with a sequenc-
ing error rate of 0.01) (top left), +2 standard deviations of the bias parameter under our default prior (with a sequencing error rate
of 0.01) (top right), -2 standard deviations of the sequencing error rate under our default prior (with a bias parameter of 1) (bottom
left), +2 standard deviations of the sequencing error rate under our default prior (with a bias parameter of 1) (bottom right). The
x-axis is the number of alternative reads and the y-axis is the number of reference reads.
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Figure S2 Estimated allele frequency (y-axis) for the updog method (black) and the method of Li (2011) (orange) versus true allele
frequency (x-axis). An unbiased method would result in most points lying along the y = x line. A smooth generalized additive
model was fit to the results of both methods (blue lines). The column facets distinguish between different levels of the overdisper-
sion parameter and the row facets distinguish between different levels of the bias parameter (with 1 indicating no bias).
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Figure S2 Boxplots of the correlation between the true and estimated genotypes (y-axis) stratified by the binned values of the ma-
jor allele frequency (x-axis). The boxplots are color-coded by method: updog (black), fitPoly (orange), the naive method (blue),
GATK (green), and the method of Li (2011) (yellow). The column facets distinguish between different levels of the overdispersion
parameter and the row facets distinguish between different levels of the bias parameter (with 1 indicating no bias).
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Figure S3 Allele frequency (x-axis) versus log2 of the estimated bias (y-axis). The row facets distinguish different levels of bias
(with 1 indicating no bias) and the column facets distinguish different levels of overdispersion.
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Figure S4 Allele frequency (x-axis) versus estimated overdispersion level (y-axis). The row facets distinguish different levels of bias
(with 1 indicating no bias) and the column facets distinguish different levels of overdispersion.
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Figure S5 Allele frequency (x-axis) versus estimated sequencing error rate (y-axis). The row facets distinguish different levels of
bias (with 1 indicating no bias) and the column facets distinguish different levels of overdispersion.

8 Gerard et al.



0 0.01 0.02
0.5

0.75
1

3 4 5 3 4 5 3 4 5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Parent Genotype

Pr
op

or
tio

n 
C

or
re

ct

Prior

HWE

S1

Figure S6 Box plots of the proportion of individuals genotyped correctly in an updog fit (y-axis) stratified by parent genotype (x-
axis). Column facets distinguish different levels of overdispersion while row facets distinguish different levels of bias (with 1 in-
dicating no bias). Orange box plots correctly assume the individuals are from an S1 population while black box plots incorrectly
assume the population is in Hardy-Weinberg equilibrium.
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Figure S7 Histograms of updog estimates of parameters in 1000 SNPs from the data from Shirasawa et al. (2017).
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Figure S8 Updog’s estimated proportion of individuals genotyped incorrectly (x-axis) versus fitPoly’s estimated proportion of
individuals genotyped incorrectly (y-axis) for the 1000 SNPs in the dataset from Shirasawa et al. (2017) with the largest read depth.
The dashed line is the y = x line. Updog has a larger estimate of incorrectly genotyped individuals for points below this line, and a
smaller estimate for points above this line.
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Figure S9 A genotype plot of the SNP from the dataset of Shirasawa et al. (2017) where updog estimated that 4.5% of the individ-
uals were genotyped incorrectly and fitPoly estimated that 28.5% of the individuals were genotyped incorrectly. The figure is
annotated by an updog fit.
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Figure S10 The minimum read depth required to obtain an oracle genotyping error rate less than 0.05 under different levels of
overdispersion (y-axis) and allelic bias (x-axis) while the sequencing error rate is fixed at 0.001. This is for a diploid population
under Hardy-Weinberg equilibrium with a major allele frequency of 0.8.
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Figure S11 The minimum read depth required to obtain an oracle genotyping error rate less than 0.05 under different levels of
overdispersion (y-axis) and allelic bias (x-axis) while the sequencing error rate is fixed at 0.001. This is for a tetraploid population
under Hardy-Weinberg equilibrium with a major allele frequency of 0.8.
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Figure S12 The minimum read depth required to obtain an oracle genotyping error rate less than 0.05 under different levels of
overdispersion (y-axis) and allelic bias (x-axis) while the sequencing error rate is fixed at 0.001. This is for a hexaploid population
under Hardy-Weinberg equilibrium with a major allele frequency of 0.8. Grey regions require a read depth greater than 3000.
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Figure S13 The minimum read depth required to obtain a correlation of over 0.9 between the true and oracly estimated genotypes
under different levels of overdispersion (y-axis) and allelic bias (x-axis) while the sequencing error rate is fixed at 0.001. This is for a
diploid population under Hardy-Weinberg equilibrium with a major allele frequency of 0.8.
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Figure S14 The minimum read depth required to obtain a correlation of over 0.9 between the true and oracly estimated genotypes
under different levels of overdispersion (y-axis) and allelic bias (x-axis) while the sequencing error rate is fixed at 0.001. This is for a
tetraploid population under Hardy-Weinberg equilibrium with a major allele frequency of 0.8.
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Figure S15 The minimum read depth required to obtain a correlation of over 0.9 between the true and oracly estimated genotypes
under different levels of overdispersion (y-axis) and allelic bias (x-axis) while the sequencing error rate is fixed at 0.001. This is for a
hexaploid population under Hardy-Weinberg equilibrium with a major allele frequency of 0.8.
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