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Analysis of variance for Pool-seq data

In the following, we first derive our model for a single locus. Consider a

sample of nd subpopulations, each of which is made of ni genes (i = 1, . . . , nd)

sequenced in pools (hence ni is the haploid sample size of the ith pool). We

define cij as the number of reads sequenced from gene j (j = 1, . . . , ni) in

subpopulation i at the locus considered. Note that cij is a latent variable,

that cannot be directly observed from the data. Let Xijr:k be an indicator

variable for read r (r = 1, . . . , cij) from gene j in subpopulation i, such that

Xijr:k = 1 if the rth read from the jth gene in the ith deme is of type k,

and Xijr:k = 0 otherwise. In the following, we use standard dot notations

for sample averages, i.e.: Xij·:k ≡
∑

rXijr:k/cij, Xi··:k ≡
∑

j

∑
rXijr:k/

∑
j cij

and X···:k ≡
∑

i

∑
j

∑
rXijr:k/

∑
i

∑
j cij. The analysis of variance is based

on the computation of sums of squares, as follows:

nd∑
i

ni∑
j

cij∑
r

(Xijr:k −X···:k)2 =

nd∑
i

ni∑
j

cij∑
r

(Xijr:k −Xij·:k)2

+

nd∑
i

ni∑
j

cij∑
r

(Xij·:k −Xi··:k)2

+

nd∑
i

ni∑
j

cij∑
r

(Xi··:k −X···:k)2

≡ SSR:k + SSI:k + SSP:k (A1)
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We express the sum of squares for reads within individuals as:

SSR:k =

nd∑
i

ni∑
j

cij∑
r

(Xijr:k −Xij·:k)2

= 0 (A2)

since we assume that there is no sequencing error, i.e. all the reads sequenced

from a single gene are identical (therefore Xijr:k = Xij·:k, for all r). The sum

of squares for genes within pools reads:

SSI:k =

nd∑
i

ni∑
j

cij∑
r

(Xij·:k −Xi··:k)2

=

nd∑
i

ni∑
j

cij∑
r

(Xij·:k − πk)2 −
nd∑
i

ni∑
j

cij∑
r

(Xi··:k − πk)2

=

nd∑
i

ni∑
j

cij (Xij·:k − πk)2 −
nd∑
i

C1i (Xi··:k − πk)2 (A3)

where πk is the expectation of the frequency of allele k over independent

replicates of the evolutionary process, and C1i ≡
∑

j cij is the total number

of observed reads in the ith pool. Likewise, the sum of squares for genes

between pools reads:

SSP:k =

nd∑
i

ni∑
j

cij∑
r

(Xi··:k −X···:k)2

=

nd∑
i

C1i (Xi··:k − πk)2 − C1 (X···:k − πk)2 (A4)

where C1 ≡
∑

i

∑
j cij =

∑
iC1i is the total number of observed reads in

the full sample. These sums can be expressed as functions of the average

frequency of reads of type k for individual j: π̂ij:k ≡ Xij·:k, of the average fre-
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quency of reads of type k within the ith pool: π̂i:k ≡ Xi··:k, and of the average

frequency of reads of type k in the full sample: π̂k ≡ X···:k. Note that from the

definition of X···:k, π̂k ≡
∑

i

∑
j

∑
rXijr:k/

∑
i

∑
j cij =

∑
iC1iπ̂i:k/

∑
iC1i is

the weighted average of the sample frequencies with weights equal to the pool

coverage. Our approach is therefore equivalent to the weighted analysis-of-

variance in Cockerham (1973) (see also Weir and Cockerham 1984; Weir 1996;

Weir and Hill 2002; Rousset 2007; Weir and Goudet 2017). Then, developing

the square in the first term in the right-hand side of Equation A3, we get:

(Xij·:k − πk)2 =

(∑cij
r (Xijr:k − πk)

cij

)2

=
1

c2ij

(
cij∑
r

Xijr:k − cijπk

)2

=
1

c2ij

(
cij∑
r

X2
ijr:k +

cij∑
r 6=r′

Xijr:kXijr′:k − 2c2ijXij·:kπk + c2ijπ
2
k

)

=
1

c2ij
(cijXij·:k + cij(cij − 1)Xij·:k

− 2c2ijXij·:kπk + c2ijπ
2
k

)
= π̂ij:k − 2πkπ̂ij:k + π2

k (A5)

The sums of squares also depend on the unobserved frequency of pairs of

genes sampled in the ith pool that are both of type k, i.e. the probability

of identity in state (IIS) for allele k, for two distinct genes in the ith pool:

Q̂1i:k ≡
(∑

j 6=j′
∑

r,r′ Xijr:kXij′r′:k

)
/
(
C2

1i −
∑

j c
2
ij

)
. Then, developing the
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square in the second term in the right-hand side of Equation A3, we get:

(Xi··:k − πk)2 =

(∑ni

j

∑cij
r (Xijr:k − πk)

C1i

)2

=
1

C1i
2

(
ni∑
j

cij∑
r

Xijr:k − C1iπk

)2

=
1

C1i
2

(
ni∑
j

cij∑
r

X2
ijr:k +

ni∑
j

cij∑
r 6=r′

Xijr:kXijr′:k

+

ni∑
j 6=j′

cij∑
r,r′

Xijr:kXij′r′:k − 2C2
1iXi··:kπk + C2

1iπ
2
k

)

=
1

C1i
2

(
ni∑
j

cijXij·:k +

ni∑
j

cij(cij − 1)Xij·:k

+

(
C2

1i −
ni∑
j

c2ij

)
Q̂1i:k − 2C2

1iXi··:kπk + C2
1iπ

2
k

)

=
1

C1i
2

(
ni∑
j

c2ij (Xij·:k −Xi··:k) +

(
C2

1i −
ni∑
j

c2ij

)(
Q̂1i:k −Xi··:k

)
+ C2

1iXi··:k − 2C2
1iXi··:kπk + C2

1iπ
2
k

)

= π̂i:k − 2πkπ̂i:k + π2
k +

ni∑
j

c2ij
C2

1i

(π̂ij:k − π̂i:k)

+

(
1−

ni∑
j

c2ij
C2

1i

)(
Q̂1i:k − π̂i:k

)
(A6)

Last, the sums of squares depend on the unobserved frequency of pairs

of genes sampled in the same pool that are both of type k, i.e. the IIS

probability for allele k for two distinct genes in the same pool: Q̂1:k ≡(∑
i

∑
j 6=j′

∑
r,r′ Xijr:kXij′r′:k

)
/
(
C2 −

∑
i

∑
j c

2
ij

)
, and of the unobserved

frequency of pairs of genes sampled in different pools that are both of type

k: Q̂2:k ≡
(∑

i 6=i′
∑

j,j′
∑

r,r′ Xijr:kXi′j′r′:k

)
/ (C2

1 − C2), where C2 ≡
∑

iC
2
1i.
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Developing the second term in the right-hand side of Equation A4, we get:

(X···:k − πk)2 =

(∑nd

i

∑ni

j

∑cij
r (Xijr:k − πk)

C1

)2

=
1

C2
1

(
nd∑
i

ni∑
j

cij∑
r

Xijr:k − C1πk

)2

=
1

C2
1

(
nd∑
i

ni∑
j

cij∑
r

X2
ijr:k +

nd∑
i

ni∑
j

cij∑
r 6=r′

Xijr:kXijr′:k

+

nd∑
i

ni∑
j 6=j′

cij∑
r,r′

Xijr:kXi′j′r′:k +

nd∑
i 6=i′

ni∑
j,j′

cij∑
r,r′

Xijr:kXi′j′r′:k

− 2C2
1X···:kπk + C2

1π
2
k

)

=
1

C2
1

(
nd∑
i

ni∑
j

cijXij·:k +

nd∑
i

ni∑
j

cij(cij − 1)Xij·:k

+

(
C2 −

nd∑
i

ni∑
j

c2ij

)
Q̂1:k +

(
C2

1 − C2

)
Q̂2:k − 2C2

1X···:kπk + C2
1π

2
k

)

=
1

C2
1

(
nd∑
i

ni∑
j

c2ij (Xij·:k −X···:k) +

(
C2 −

nd∑
i

ni∑
j

c2ij

)(
Q̂1:k −X···:k

)
+

(
C2

1 − C2

) (
Q̂2:k −X···:k

)
+ C2

1X···:k − 2C2
1X···:kπk + C2

1π
2
k

)

= π̂k − 2πkπ̂k + π2
k +

nd∑
i

ni∑
j

c2ij
C2

1

(π̂ij:k − π̂k)

+

(
C2

C2
1

−
nd∑
i

ni∑
j

c2ij
C2

1

)(
Q̂1:k − π̂k

)
+

(
1− C2

C2
1

)(
Q̂2:k − π̂k

)
(A7)

Hence, developing the first term in the right-hand side of Equation A3 using

Equation A5, we have:

nd∑
i

ni∑
j

cij (Xij·:k − πk)2 = C1

(
π̂k − 2πkπ̂k + π2

k

)
(A8)
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Likewise, developing the second term in the right-hand side of Equation A3

using Equation A6, we get:

nd∑
i

C1i (Xi··:k − πk)2 = C1

(
π̂k − 2πkπ̂k + π2

k

)
+

nd∑
i

ni∑
j

c2ij
C1i

(π̂ij:k − π̂i:k)

+

nd∑
i

(
C1i −

ni∑
j

c2ij
C1i

)(
Q̂1i:k − π̂i:k

)
(A9)

Last, developing the second term in the right-hand side of Equation A4 using

Equation A7, we get:

C1 (X···:k − πk)2 = C1

(
π̂k − 2πkπ̂k + π2

k

)
+

nd∑
i

ni∑
j

c2ij
C1

(π̂ij:k − π̂k)

+

(
C2

C1

−
nd∑
i

ni∑
j

c2ij
C1

)(
Q̂1:k − π̂k

)
+

(
C1 −

C2

C1

)(
Q̂2:k − π̂k

)
(A10)

Then, from Equations A3, A8 and A9:

SSI:k =

nd∑
i

ni∑
j

c2ij
C1i

(π̂i:k − π̂ij:k)

+

nd∑
i

(
C1i −

ni∑
j

c2ij
C1i

)(
π̂i:k − Q̂1i:k

)
(A11)

and from Equations A4, A9 and A10:

SSP:k =

nd∑
i

ni∑
j

c2ij
C1i

(π̂ij:k − π̂i:k)−
nd∑
i

(
C1i −

ni∑
j

c2ij
C1i

)(
π̂i:k − Q̂1i:k

)
+

nd∑
i

ni∑
j

c2ij
C1

(π̂k − π̂ij:k) +

(
C2

C1

−
nd∑
i

ni∑
j

c2ij
C1

)(
π̂k − Q̂1:k

)
+

(
C1 −

C2

C1

)(
π̂k − Q̂2:k

)
(A12)
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Taking expectation over all possible samples from all replicate populations

sharing the same evolutionary history, we get from Equation A11:

E(SSI:k) =

nd∑
i

ni∑
j

E (π̂i:k − π̂ij:k)E
(
c2ij
C1i

)

+

nd∑
i

E
(
π̂i:k − Q̂1i:k

)
E

(
C1i −

ni∑
j

c2ij
C1i

)

= (πk −Q1:k)

(
C1 − E

(
nd∑
i

ni∑
j

c2ij
C1i

))
(A13)

where Q1:k is the expected IIS probability that two genes in the same pool

are both of type k. Likewise, from Equation A12:

E(SSP:k) =

nd∑
i

ni∑
j

E (π̂i:k − π̂ij:k)E
(
c2ij
C1i

)
+

nd∑
i

ni∑
j

E (π̂k − π̂ij:k)E
(
c2ij
C1

)

−
nd∑
i

E
(
π̂i:k − Q̂1i:k

)
E

(
C1i −

ni∑
j

c2ij
C1i

)

+ E
(
π̂k − Q̂1:k

)
E

(
C2

C1

−
nd∑
i

ni∑
j

c2ij
C1

)

+

(
C1 −

C2

C1

)
E
(
π̂k − Q̂2:k

)
= (πk −Q1:k)

(
C2

C1

− E

(
nd∑
i

ni∑
j

c2ij
C1

))

− (πk −Q1:k)

(
C1 − E

(
nd∑
i

ni∑
j

c2ij
C1i

))

+

(
C1 −

C2

C1

)
(πk −Q2:k) (A14)

where Q2:k is the expected IIS probability that two genes from different pools

are both of type k. Note that the expected sums E
(∑

i

∑
j c

2
ij

)
/C1i and

E
(∑

i

∑
j c

2
ij

)
/C1 in Equations A13 and A14 depend on the latent variable
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cij, that cannot be directly observed from the data. Therefore, we must make

an assumption on the distribution of the cij’s to proceed. In the following,

we assume that for each pool i, cij follows a multinomial distribution with

parameter C1i (the number of trials, i.e. the total number of reads in the

ith pool) and probabilities (1/ni, . . . , 1/ni) for the ni individuals in the pool.

Then:

E

(
nd∑
i

ni∑
j

c2ij
C1i

)
=

nd∑
i

1

C1i

ni∑
j

E
(
c2ij
)

=

nd∑
i

1

C1i

ni∑
j

(
E (cij)

2 + V (cij)

)

=

nd∑
i

1

C1i

ni∑
j

((
C1i

ni

)2

+
C1i

ni

(
ni − 1

ni

))

=

nd∑
i

(
C1i

ni

+

(
ni − 1

ni

))
≡ D2 (A15)

and:

E

(
nd∑
i

ni∑
j

c2ij
C1

)
=

1

C1

nd∑
i

ni∑
j

E
(
c2ij
)

=
1

C1

nd∑
i

C1i

[
C1i

ni

+

(
ni − 1

ni

)]
≡ D?

2 (A16)

Hence, from Equations A13 and A15, we have:

E(SSI:k) = (C1 −D2) (πk −Q1:k) (A17)
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and from Equations A14 and A16:

E(SSP:k) =

(
C2

C1

−D?
2

)
(πk −Q1:k)− (C1 −D2) (πk −Q1:k)

+

(
C1 −

C2

C1

)
(πk −Q2:k)

=

(
C1 −

C2

C1

)
(Q1:k −Q2:k)

+ (D2 −D?
2) (πk −Q1:k) (A18)

Summing over alleles, we get the following expressions for the expected sums

of squares for genes between individuals within pools:

E(SSI) =
∑
k

E(SSI:k) = (C1 −D2) (1−Q1) (A19)

and for genes between individuals from different pools:

E(SSP ) =
∑
k

E(SSP:k)

=

(
C1 −

C2

C1

)
(Q1 −Q2) + (D2 −D?

2) (1−Q1) (A20)

Rearranging Equations A19–A20, we get:

Q1 −Q2 =
(C1 −D2)E(SSP )− (D2 −D?

2)E(SSI)

(C1 −D2) (C1 − C2/C1)
(A21)

and:

1−Q2 =
(C1 −D2)E(SSP ) + (nc − 1) (D2 −D?

2)E(SSI)

(C1 −D2) (C1 − C2/C1)
(A22)

where nc ≡ (C1 − C2/C1) / (D2 −D?
2). Let MSI ≡ SSI/ (C1 −D2) and

MSP ≡ SSP/ (D2 −D?
2). Then, using the definition of FST from Equation 1
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in the main text, and rearranging Equations A21–A22, we get:

FST ≡
Q1 −Q2

1−Q2

=
E(MSP )− E(MSI)

E(MSP ) + (nc − 1)E(MSI)
(A23)

which yields the method-of-moments estimator:

F̂ pool
ST =

MSP −MSI

MSP + (nc − 1)MSI
(A24)

Since SSI (Equation A3) and SSP (Equation A4) may be rewritten in terms

of sample frequencies as:

SSI =
∑
k

SSI:k =
∑
k

nd∑
i

ni∑
j

cij∑
r

(Xij·:k −Xi··:k)2

=
∑
k

nd∑
i

C1iπ̂i:k (1− π̂i:k) (A25)

and:

SSP =
∑
k

SSPk =
∑
k

nd∑
i

ni∑
j

cij∑
r

(Xi··:k −X···:k)2

=
∑
k

nd∑
i

C1i (π̂i:k − π̂k)2 (A26)

our estimator then takes the form:

F̂ pool
ST =

∑
k

[
(C1 −D2)

∑nd

i C1i (π̂i:k − π̂k)2 − (D2 −D?
2)
∑nd

i C1iπ̂i:k (1− π̂i:k)
]∑

k

[
(C1 −D2)

∑nd

i C1i (π̂i:k − π̂k)2 + (nc − 1) (D2 −D?
2)
∑nd

i C1iπ̂i:k (1− π̂i:k)
]

(A27)

The estimator in Equation A24 can also be expressed as a function of the
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frequencies of identical pairs of genes Q̂1 =
∑

k Q̂1:k and Q̂2 =
∑

k Q̂2:k, as:

F̂ pool
ST =

(
Q̂1 − Q̂2

)
α +

(
C1 −

∑
i

∑
j

c2ij
C1

)
β(

1− Q̂2

)
α +

(
C2/C1 −

∑
i

∑
j

c2ij
C1

)
β

(A28)

where:

α ≡

(
C1 −

∑
i

∑
j

c2ij
C1i

)(
C1 −

C2

C1

)
(A29)

and:

β ≡
∑
i

(
C1i −

∑
j

c2ij
C1i

)(
Q̂1i − Q̂1

)
(A30)

If we take the limit case where the number of sequenced reads per gene is

constant, i.e. if C1i = C, for all i ∈ (1, . . . , nd), then it can be shown that

Equation A28 reduces exactly to Equations 28A29–28A30 in Rousset (2007),

p. 977. Furthermore, if the pools have all the same size, i.e. if ni = n for all

i ∈ (1, . . . , nd), then F̂ pool
ST =

(
Q̂1 − Q̂2

)
/
(

1− Q̂2

)
.

If the pools have all the same size and if the number of reads per pool is

constant, then one can also show that Equations A25–A26 reduce to:

SSI = nd(C − 1)
(

1− Q̂r
1

)
(A31)

and:

SSP = C(nd − 1)
(

1− Q̂r
2

)
− (nd − 1)(C − 1)

(
1− Q̂r

1

)
(A32)

where Q̂r
1 and Q̂r

2 are the frequencies of identical pairs of reads within and be-

tween pools, respectively, computed by simple counting of IIS pairs. These
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are (unweighted) averages of the population-specific estimates Q̂r
1i (Equa-

tion A34) and the pairwise estimates Q̂r
2ii′ (Equation A40), respectively.

Then, from Equation A24, we get:

F̂ pool
ST = 1−

(
1− Q̂r

1

1− Q̂r
2

)(
n

n− 1

)
(A33)

12



IIS probabilities for Pool-seq data

In this Appendix, we provide unbiased estimates of IIS probabilies between

pairs of genes, computed from read count data. Let ri:k =
∑

j

∑
rXijr:k be

the number of reads of type k in the ith pool. A straightforward estimate of

the IIS probability between pairs of reads in the ith pool is given by:

Q̂r
1i ≡

∑
k ri:k (ri:k − 1)

C1i (C1i − 1)
(A34)

where C1i =
∑

k ri:k. As above (see Equations A15 and A16), we assume that

in each pool, the conditional distribution of the read counts ri:k, given the

(unobserved) allele counts yi:k, is binomial, i.e.: ri:k | yi:k ∼ Bin (yi:k/ni, C1i).

The conditional expectation of the number of reads is therefore given by:

E(ri:k | yi:k) = C1i (yi:k/ni), and the conditional expectation of the squared

number of reads by: E(r2i:k | yi:k) = C1i(C1i − 1) (yi:k/ni)
2 + C1i (yi:k/ni).

Therefore, the conditional expectation of the IIS probability between pairs

of reads in the ith pool reads:

E
(
Q̂r

1i | yi:k
)

=

∑
k E (r2i:k − ri:k)

C1i (C1i − 1)
=
∑
k

(
yi:k
ni

)2

(A35)

Since

Q̂1i ≡
∑

k yi:k (yi:k − 1)

ni (ni − 1)
(A36)

is an unbiased estimate of the IIS probability between pairs of distinct genes

in the ith pool, Equation A35 implies that Q̂r
1i (Equation A34) is a biased

estimate of that quantity (i.e., the IIS probability between pairs of reads

within a pool is a biased estimate of the IIS probability between pairs of
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distinct genes in that pool). This is so, because the former confounds pairs

of reads that are identical because they were sequenced from a single gene

copy, from pairs of reads (from distinct gene copies) that are identical because

they share a common ancestor. However, inspection of Equation A35 suggests

that an unbiased estimate of Q̂1i may be given by:

Q̂pool
1i ≡ 1− ni

ni − 1

(
1− Q̂r

1i

)
(A37)

Taking expectation of Equation A37, we get indeed:

E
(
Q̂pool

1i | yi:k
)

=
ni

ni − 1
E
(
Q̂r

1i

)
− 1

ni − 1

=
ni

ni − 1

∑
k

(
yi:k
ni

)2

− ni

ni(ni − 1)

=

∑
k y

2
i:k

ni(ni − 1)
−

∑
k yi:k

ni(ni − 1)

=

∑
k yi:k(yi:k − 1)

ni(ni − 1)
≡ Q̂1i (A38)

Following Weir and Goudet (2017), we define the overall IIS probability be-

tween pairs of genes within pools as the unweighted average of population-

specific estimates, leading to:

Q̂pool
1 ≡

∑
i Q̂

pool
1i

nd

= 1− 1

nd

∑
i

ni

ni − 1

(
1− Q̂r

1i

)
(A39)

A straightforward estimate of the IIS probability between pairs of reads

taken in different pools i and i′ is given by:

Q̂r
2ii′ ≡

∑
k ri:kri′:k
C1iC1i′

(A40)
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Since we assume that pools are conditionally independent, taking expectation

gives:

E
(
Q̂r

2ii′ | yi:k, yi′:k
)

=

∑
k E(ri:k)E(ri′:k)

C1iC1i′

=
∑
k

(
yi:kyi′:k
nini′

)
≡ Q̂2ii′ (A41)

Therefore, the IIS probability between pairs of reads sampled in different

pools is an unbiased estimate of the IIS probability between pairs of genes in

these pools, and an unbiased estimate of the IIS probabilitiy of genes sampled

from different pools is given by:

Q̂pool
2ii′ ≡ Q̂r

2ii′ (A42)

As above, we define the overall IIS probability between pairs of genes sampled

from different pools as the unweighted average of pairwise estimates, i.e.:

Q̂pool
2 ≡

∑
i 6=i′ Q̂

pool
2ii′

nd(nd − 1)
= 1− 1

nd(nd − 1)

∑
i 6=i′

(
1− Q̂r

2ii′

)
(A43)

We can then derive an IIS-based estimator of FST, as:

F̂ pool−PID
ST ≡ Q̂pool

1 − Q̂pool
2

1− Q̂pool
2

= 1− 1− Q̂pool
1

1− Q̂pool
2

= 1−

∑
i

[(
1− Q̂r

1i

)
ni/ (ni − 1)

]
∑

i 6=i′

(
1− Q̂r

2ii′

)
/ (nd − 1)

(A44)

which, to the extent that we may take the expectation of a ratio to be the

ratio of expectations, is unbiased. If the pools have all the same size (i.e., if

15



ni = n for all i), then Equation A44 reduces to:

F̂ pool−PID
ST = 1−

(
1− Q̂r

1

1− Q̂r
2

)(
n

n− 1

)
(A45)

where Q̂r
1 ≡

∑
i Q̂

r
1i/nd and Q̂r

2 ≡
∑

i 6=i′ Q̂
r
2ii′/ [nd(nd − 1)]. Note that Equa-

tion A45 is strictly identical to Equation A33. Therefore, if the pools have all

the same size and if the number of reads per pool is constant, the analysis-

of-variance estimator F̂ pool
ST is strictly equivalent to the estimator F̂ pool−PID

ST

based on the computation of IIS probabilities between pairs of reads, with

appropriate bias correction (see Equation A37). This echoes the derivations

by Rousset (2007) for Ind-seq data, who showed that the analysis-of-variance

approach (Weir and Cockerham 1984) and the simple strategy of estimat-

ing IIS probabilities by counting identical pairs of genes provides identical

estimates when sample sizes are equal (see also Cockerham and Weir 1987;

Karlsson et al. 2007).

Alternatively, the overall IIS probability between pairs of genes within

pools may be defined as the weighted average of population-specific estimates,

with weights equal to the number of pairs of genes in each pool (see Rousset

2007), i.e.:

Q̃pool
1 ≡

∑
i ni(ni − 1)Q̂pool

1i∑
i ni(ni − 1)

(A46)

Likewise, the overall IIS probability between pairs of genes sampled from

different pools may be defined as the weighted average of pairwise estimates,

with weights equal to the number of pairs of genes sampled between pools,
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i.e.:

Q̃pool
2 ≡

∑
i 6=i′ nini′Q̂

pool
2ii′∑

i 6=i′ nini′
(A47)

We can then derive an IIS-based estimator of FST, using weighted IIS prob-

abilities, as:

F̃ pool−PID
ST ≡ Q̃pool

1 − Q̃pool
2

1− Q̃pool
2

= 1− 1− Q̃pool
1

1− Q̃pool
2

= 1−

∑
i

[
n2
i

(
1− Q̂r

1i

)]
/
∑

i ni(ni − 1)∑
i 6=i′ nini′

(
1− Q̂r

2ii′

)
/
∑

i 6=i′ nini′

(A48)

If the pools have all the same size (i.e., if ni = n for all i), then Equation A48

reduces to Equation A45, and F̃ pool−PID
ST = F̂ pool−PID

ST . With unbalanced sam-

ples, simulation analyses show that F̃ pool−PID
ST has larger bias and variance

than F̂ pool−PID
ST , in particular for low levels of differentiation (see Figure S4).
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