		Pool-seq		Ind-seq
$F_{\rm ST}$	n	Cov.	$\hat{F}_{\mathrm{ST}}^{\mathrm{pool}}$	WC ₈₄
0.05	$\mathcal{N}(100, 30)$	$20\times$	$0.051 \ (0.003)$	
0.05	$\mathcal{N}(100, 30)$	$50 \times$	$0.052\ (0.003)$	$0.051 \ (0.002)$
0.05	$\mathcal{N}(100, 30)$	$100 \times$	$0.051 \ (0.002)$	
0.20	$\mathcal{N}(100, 30)$	$20 \times$	$0.202 \ (0.007)$	
0.20	$\mathcal{N}(100, 30)$	$50 \times$	$0.202 \ (0.006)$	$0.202 \ (0.006)$
0.20	$\mathcal{N}(100, 30)$	$100 \times$	$0.202 \ (0.006)$	

Table S2 Effect of unequal sampling on pairwise F_{ST} estimates

Pairwise multilocus $\hat{F}_{\rm ST}^{\rm pool}$ estimates were computed for various conditions of expected $F_{\rm ST}$ and coverage (Cov.) in an island model with $n_{\rm d} = 8$ subpopulations (pools). The pool size (*n*) was variable across demes, with haploid sample size *n* drawn independently for each deme from a Gaussian distribution with mean 100 and standard deviation 30; *n* was rounded up to the nearest integer, with min. 20 and max. 300 haploids per deme. The mean (RMSE) is computed for a single pair of subpopulations, over 50 independent simulated datasets, each made of 5,000 loci. For comparison, we computed multilocus WC₈₄ (Weir and Cockerham 1984) estimates from allele count data inferred from individual genotypes (Ind-seq).