
Supplementary Note  

Multivariate statistical test 

Consider a regression model: 

𝑌 = 𝑓 𝑿𝛽 + 𝑪𝛾 + 𝑿 ∗ 𝑪 𝛿 + 𝜀 

where 𝑌 is a 𝑁×1 vector of observations of either a continuous or a binary phenotype, 𝑿 

is a 𝑁×𝐾 genotype matrix, 𝑪 is a 𝑁×𝑃 matrix of covariates and 𝜀~𝒩 0,𝜎  is a 𝑁×1 

vector of residuals. The 𝐾×𝑃 interactions between genotypes and covariates are denoted 

by the 𝑿 ∗ 𝑪 matrix. Genotype effects, covariates effects and interaction effects are 

respectively denoted by the 𝐾×1vector 𝛽, the 𝑃×1 vector 𝛾 and the 𝐾×𝑃 ×1 vector 𝛿. 

Depending on the nature of 𝒀, the function 𝑓 is either the identity if 𝑌 is continuous, or 

the expit function if 𝑌 is binary. 

Without loss of generality, we will focus here on testing the interaction effects 𝛿. 

Several statistical tests can be performed to test the null hypothesis 𝐻!  𝛿 = 𝛿! against 

the alternative 𝐻!  𝛿 ≠ 𝛿!. 

 

Wald test: Let 𝚺 denote the variance covariance matrix of the interaction effects. The 

Wald (or Omnibus) statistics is defined: 

𝑇!"#$ = 𝛿!𝚺!!𝛿 

Under the null, 𝑇!"#$ follows a 𝜒! distribution with 𝐾×𝑃 degrees of freedom. 

 

Likelihood Ratio Test: Let 𝐿 𝛿  denote the likelihood of the model when 𝛿 = 𝛿, the 

estimated coefficients (either using Maximum Likelihood Estimators or Ordinary Least  



Squares). The statistics used in the Likelihood Ratio Test (LRT) is defined as: 

𝑇!"# = 2 log 𝐿 𝛿! − log 𝐿 𝛿  

The statistics 𝑇!"# follows a 𝜒! distribution with 𝐾×𝑃 degrees of freedom under the null. 

 

Rao’s Score Test (Lagrange Multiplier): The Rao’s Score Test statistics is defined as: 

𝑇!"#$% = 𝑈! 𝛿! 𝐼!! 𝛿! 𝑈 𝛿!  

where 𝑈 0 = !!"# !
!" !!!!

 is the value of the derivative of the log-likelihood when 

𝛿 = 𝛿!, and 𝐼 0 = −𝔼 !!!"# !
!"!!! !!!!

 is the Fisher Information. Under the null, 𝑇!"#$% 

follows a 𝜒! distribution with 𝐾×𝑃 degrees of freedom. 

 

More details on those tests can be found in the literatures (Buse 1982; Engle 1984). 

Asymptotically, the three tests are equivalent even though some discrepancies can be 

observed in finite samples. In the case where the log-likelihood is quadratic, the three 

statistics of linear regression are equal but it has been proven that 𝑇!"#$ ≥ 𝑇!"# ≥

𝑇!"#$%  (Buse 1982). This trend look different from our result in Figure 1 (𝑇!"# ≥

𝑇!"#$ ≥ 𝑇!"#$%) but it is mainly due to the inflated residual variance estimate of LRT 

(Details are described below).  

 

LRT inflation observed in the linear model 

An important inflation can be observed with the LRT (QQ plot for null model) when 

testing the simultaneous nullity of the interaction effects, whereas the distributions of the 



p-values obtained with the Wald test and the Score test are in adequacy with the expected 

uniform distribution. The explanation is that the LRT requires the estimation of the 

residual variance of the model. In the lrtest, this residual variance is estimated by 

𝜎 = 𝜀!! 𝑛, which corresponds to the maximum likelihood estimator of the residual 

variance. However, this estimation is biased and an unbiased estimation of this residual 

variance is given by 𝜎 = 𝜀!! 𝑛 − 𝑟 , where 𝑟 denotes the rank of the covariate 

matrix (here, 𝑟 = 𝐾×𝑃. This different scaling of the two estimators leads to the inflation 

observed when performing the LRT. Still, substituting the Maximum Likelihood 

Estimator of the residual variance by its Ordinary Least Squares estimation corrects for 

this inflation and yields the same results as the two other tests (Figure S1). 

 

Inflation of LRT and deflation of the Wald test in the logistic model 

In the simulation setting of Figure 1 (N = 20,000; 30% disease prevalence, Nsnp = 

100; Nexp = 10), the logistic model with interaction terms includes 1,111 (including 

intercept) parameters to be estimated. Thus, the number of Events Per Variable (EPV), 

defined as the ratio of the number of cases over the number of parameters, equals 

6000 1111 = 5.4. A commonly admitted rule of thumb in logistic model is to have at 

least 10 EPV. This rule has been defined based on previous simulation studies 

demonstrating that small EPV lead to bias in the estimation of both the parameters value 

and variance (Peduzzi et al. 1996), although other studies (van Smeden et al. 2016; 

Vittinghoff and McCulloch 2007) argued that this rule may be too conservative and 

highlighted that other factors (such as sample size or number of variables) might play a 



role in estimation accuracy. Overall, these previous works and other (Hauck and Donner 

1977) –which focused on situation where a single parameter is tested–reported 

qualitatively similar behavior as we observed in our simulation where multiple 

parameters are tested jointly, showing that: i) the Wald test was too conservative 

(deflated) in the case of logistic regression with low EPV, and ii) that LRT test will tend 

to display inflated statistics. 

The rationale for this behavior is likely explained by difference in the estimates 

required to perform each of the three tests. The LRT requires the likelihoods from both 

the saturated model (with the interaction terms) and the constrained model (with the 

interaction terms set to 0). The Wald test requires the coefficient and their standard error 

estimates in the saturated model. Finally, the Score test requires the coefficient and their 

standard error estimates in the unsaturated model. As discussed above, because of low 

EPV, estimates from the saturated model are biased. It follows that tests using 

information from the unsaturated model, i.e. the LRT and the Wald test, are more likely to 

perform poorly. On the other hand, the unsaturated model uses less parameters and thus 

the number of EPV mechanically increases (in our simulation scenario, 111 parameters 

and EPV 6000 111 = 55). Consequently, parameters in the unsaturated model are less 

impacted by the aforementioned bias, explaining the better behavior of the Score test. 
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