File S1 - Constraints of Minor Allele Frequency on F_{ST}

Assuming all populations have the same size, we define p_i as the observed frequency of the minor allele in population *i*, and $p = \frac{\sum_{i=1}^{n} p_i}{n}$ as the minor allele frequency over all *n* populations. To simplify calculations, here we analyzed the constraints of minor allele frequency on F_{ST} using the expected value of F_{ST}, instead of the Weir and Cockerham (1984) F_{ST} estimator used in the main text. The expected value of F_{ST} is defined by

$$F_{ST} = \frac{H_T - H_S}{H_T},\tag{1}$$

where H_T is the heterozygosity in the total population and H_S is the average heterozygosity within subpopulations, defined by

$$H_T = 2p(1-p) \qquad H_S = \frac{\sum_{i=1}^n 2p_i(1-p_i)}{n}.$$
 (2)

Maximum F_{ST} for a given p is achieved when H_S is minimal. This happens when all occurrences of the minor allele are concentrated in as few populations as possible and only one population is polymorphic at that site (Alcala and Rosenberg 2017), *i.e.* when $\lfloor pn \rfloor$ populations are fixed for the minor allele, and the remainder of minor alleles are all in the same population, with frequency $p^* = pn - \lfloor pn \rfloor$. (The notation $\lfloor \rfloor$ represents the integer part of the number pn).

All populations that are fixed for either the minor or major allele will not contribute to H_S , since either p_i or $1 - p_i$ will be zero. So the H_S formula in the scenario of maximum F_{ST} can be simplified to

$$H_{S_{maxF_{ST}}} = \frac{2p^*(1-p^*)}{n}.$$
(3)

For example, with n = 10 populations and MAF of p = 0.15, maximum F_{ST} will be achieved when $\lfloor 1.5 \rfloor = 1$ population is fixed for the minor allele, 1 population has $MAF = p^* = 1.5 - 1 = 0.5$, and the remainder 8 populations are fixed for the major allele. In this case, maximum F_{ST} is 0.8.

To illustrate this constraint imposed by MAF on F_{ST} , we simulated the neutral evolution of SNPs in 10 populations, with virtually no migration among them, allowing SNPs to achieve maximum differentiation among populations. Simulations were performed using the *sim.genot* function of the hierfstat R package (Goudet 2005). We simulated the neutral evolution of 10,000 bi-allelic loci (SNPs) in 10 populations, each with population size 1000, migration rate of $m = 10^{-5}$ and mutation rate of $\mu = 10^{-8}$, and we used sample sizes of 50, 100 or 1000 individuals. Results were independent of sample size. The low migration rate allowed SNPs to achieve maximum F_{ST} values possible given their MAF. Figure S1 shows the F_{ST} of 10,000 simulated SNPs as a function of their MAFs, as well as the maximum F_{ST} values estimated by replacing the observed values by the expected one in Equations 1-3.

Figure S1 shows that, when all subpopulations are the same size (in the case of Figure S1, n = 10), F_{ST} only achieves 1 when MAF is exactly $m \in \{1/n, 2/n, ..., 1/2\}$. This is because F_{ST} can only achieve 1 when H_S is zero, and H_S can only be exactly zero when all populations are fixed for either the minor or major allele. Maximum values of F_{ST} increase linearly from zero to one as MAF increases from zero to 1/n. When MAF is between the values of m, maximum F_{ST} is less than 1, which generates the wavy pattern seen in Figure S1.

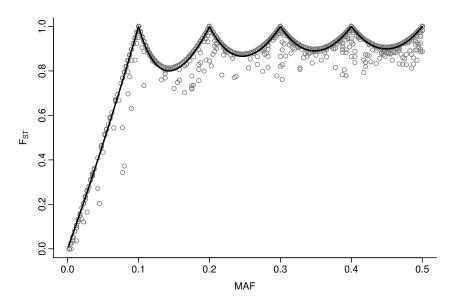


Figure S1 Maximum F_{ST} as a function of MAF for n = 10 populations. Black line shows maximum F_{ST} as a function of MAF, calculated using Equations 1-3. Gray points are simulations of biallelic SNPs evolving neutrally in 10 populations of the same size, with low migration among them, which allows them to achieve maximum F_{ST} .

Literature Cited

- Alcala, N. and N. A. Rosenberg, 2017 Mathematical constraints on F ST : biallelic markers in arbitrarily many populations. Genetics **206**: 1581–1600.
- Goudet, J., 2005 Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes 5: 184–186.
- Weir, B. S. and C. C. Cockerham, 1984 Estimating F-statistics for the analysis of population structure. Evolution **38**: 1358–1370.