
Establishment of locally adapted mutations – Supplemental Material

Appendix A: Derivation of equations (4) and (5) in the main text

Establishment probabilities in single-type branching processes

We first review some basic results for single type branching processes before we move on to multi-type

branching processes. In particular, we consider the evolution of a single panmictic population of mutant copies

and model it with a Galton-Watson branching process. In every generation n = 0, 1, 2, . . . , each mutant copy

produces a random number of offspring independently of other individuals, and then dies. Let X(n) ∈ N

denote the number of mutant copies present at time n and ξ
(n)
j ∈N the random number of offspring of mutant

copy j in generation n. We assume that the random variables ξ
(n)
j are independent and identically distributed.

The evolution of X(n) then follows

X(n + 1) =
X(n)

∑
j=1

ξ
(n)
j . (S1)

We assume that there is a single copy of the mutation at time n = 0 such that X(0) = 1. Let q =

limn→∞ P(X(n) = 0) be the probability of eventual extinction of the lineage. We define the establishment

probability as p = 1− q, that is, the probability that the lineage will survive indefinitely. A useful tool to

calculate establishment and extinction probabilities in branching processes are probability generating functions,

defined as

f (x) = E[xξ ] =
∞

∑
k=0

P(ξ = k)xk =
∞

∑
k=0

pkxk, 0 ≤ x ≤ 1 , (S2)

where pi = P(ξ = i) for i ∈N. It has been shown that (Haccou et al. 2005) q is the smallest positive root of the

equation

f (q) = q . (S3)

Establishment probabilities in multi-type branching processes

One can readily extend this framework to include variation in the offspring distributions among individuals

using multi-type branching processes. We will focus on a process with two types of individuals, labeled 1 and

2. In our model for the establishment of locally adapted mutations, these types will correspond to the deme in

which an individual resides. We will first present the theory necessary to calculate establishment probabilities

and then apply it to our model for the evolution of locally adapted mutations.

Let the random variables ξ
(i,j)
k ∈ N denote the the number of offspring of type i of the k-th individual of

Establishment of adapted mutations 1



type j. The total number of individuals of type i, that is, the number of copies of the mutant allele in deme i, at

time n is then given by Xi(n) and the evolution of the Xi’s is given by

Xi(n + 1) =
X1(n)

∑
k=1

ξ
(i,1)
k +

X2(n)

∑
l=1

ξ
(i,2)
l , (S4)

and the total number of mutants across both demes is Xtot(n) = X1(n) + X2(n). The probability generation

function of the offspring distribution is defined as f(x1, x2) = ( f1(x1, x2), f2(x1, x2)) where

fh(x1, x2) = fh(x) = E(xξ(1,h)

1 xξ(2,h)

2 ) , h ∈ {1, 2} . (S5)

The extinction probabilities are defined as q(i) = limn→∞ P(Xtot(n)) = 0 with the initial conditions Xi(0) = 1

and Xj(0) = 0 (i, j ∈ {1, 2}, i 6= j). In other words, q(i) is the probability that a lineage starting with one

individual of type i will go extinct. Using q = (q(1), q(2)), the extinction probabilities are given by the smallest

positive roots of equation

f(q) = q . (S6)

To obtain our main results, we use a theorem by Haccou et al. (2005) (pp. 127–128) for slightly supercritical

branching processes, that is, branching processes where the establishment probability is small but positive.

This theorem allows to calculate the probability of survival (i.e. p = (p(1), p(2)) where p(h) = 1− q(h)) as a

function of the leading eigenvalue of the mean reproduction matrix M, defined as

M = (Mij), Mij =
∂ fi

∂xj
(1, 1) , i, j ∈ {1, 2} . (S7)

The mean reproduction matrix is assumed to be positively regular (meaning that an integer n ≥ 1 exists such

that all entries of Mn are strictly positive). To calculate the extinction probabilities, we first need to calculate

the maximal eigenvalue of M, ρ, and the left and right eigenvectors u = (u1, u2) and v = (v1, v2), such that

uh > 0, vh > 0, h ∈ {1, 2} ,

∑
h

uhvh = ∑
h

uh = 1 .
(S8)

The leading eigenvalue ρ determines supercriticality. If ρ > 1, then the process is supercritical, and it is

sub-critical if ρ < 1. We assume slight supercriticality and write the eigenvalue and the eigenvectors as

2 Matteo Tomasini et al.



ρ = 1 + εc̃, where ε is a parameter of the model used to determine offspring distributions and c̃ is a constant

that depends on parameters of the model other than ε, such that

ρ(ε)→ 1, when ε→ 0 . (S9)

Theorem 5.6 of Haccou et al. (2005) states that the probability of indefinite survival of a lineage that starts with

a single copy of a mutant of type h is then given by

p(h) =
2[ρ− 1]

B
vh +O(ε) , (S10)

where the dependence of ρ, B and vh on ε is omitted for simplicity, and B is given by

B = ∑
h

uhVar
[

∑
j

vjξhj

]
+ ρ(ρ− 1)∑

j
ujv2

j . (S11)

Application to our model

We now apply the Theorem to our model. The types in the branching process correspond to the two demes in

our model and the evolutionary forces of drift, selection and migration determine the offspring distributions of

the two types. The strength and direction of selection varies across demes, and si is the selection coefficient of

a mutant copy in deme i. As in the main text, we assume that s1 > 0 > s2. To derive the offspring distributions

of the two types of individuals, we assume a Wright-Fisher model for reproduction, selection and migration.

In a Wright-Fisher model mutants are sampled for the next generation with probability

π
(r)
i =

ki(1 + si)

ki(1 + si) + Ni − ki
, (S12)

where Ni is the current number of wild-type individuals in deme i, and ki the number of mutant individuals.

In a branching process, we assume that mutant copies evolve independently of each other. Hence we can set

ki = 1 for the rest of the derivation and follow the fate of a single mutant copy. We assume that reproduction

follows migration (but note that changing the order of the life-cycle does not affect our final conclusions). An

individual carrying the mutant copy can either remain in the same deme or migrate to the other deme. We

denote the probability that an individual migrates from deme i to deme j by mij. The probability of switching
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from type i to type j due to migration is denoted π
(m)
i→j, and is then given by

π
(m)
i→j =



1−m12 if i = j = 1 ,

m12 if i = 1, j = 2 ,

m21 if i = 2, j = 1 ,

1−m21 if i = j = 2 .

(S13)

We assume a Wright-Fisher model of reproduction and selection and denote by Oij the offspring of type j of an

individual of type i. With probability mij (i 6= j) the offspring of a mutant of type i is

Oii = 0 ,

Oij = B(Nj, π
(r)
j ) ,

(S14)

and with probability 1−mij the offspring of a mutant of type i is

Oii = B(Ni, π
(r)
i ) ,

Oij = 0 .

(S15)

In general we can thus write the expected number of offspring of type j from a parent of type i as

E
[
Oij
]
= Nj

1 + sj

sj + Nj
· π(m)

i→j + 0 · (1− π
(m)
i→j) , (S16)

where i, j ∈ {1, 2}. For Nj → ∞, this yields

E
[
Oij
]
≈ (1 + sj)π

(m)
i→j . (S17)

Thus, during the crucial phase where mutants are rare and hence can get lost from the population due to

random fluctuations, the offspring distributions are given by a binomial distribution with the average per

individual offspring as summarized in table 1. Furthermore, for Ni → ∞ (∀i) the binomial distribution
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Type of the parent Average number of offspring of type...

Type 1 Type 2

Type 1 (1 + s1)(1−m12) (1 + s2)m12

Type 2 (1 + s1)m21 (1 + s2)(1−m21)

Table 1 The average of offspring corresponding to the different types.

of offspring numbers converges to a Poisson distribution with the same expected offspring (S17) and we

hence assume Poisson distributed offspring in the branching process. The probability generating functions of

Poisson-distributed random variables are given by

fh(x1, x2) = e∑2
i=1 Mhi(xi−1) . (S18)

where Mhi is the mean number of offspring of type i from a parent of type h (also the elements of the

reproduction mean matrix M). Hence, the probability generating functions in our model are

f1(x1, x2) = e(1+s1)(1−m12)(x1−1)+(1+s2)m12(x2−1) ,

f2(x1, x2) = e(1+s1)m21(x1−1)+(1+s2)(1−m21)(x2−1) .
(S19)

The reproduction mean matrix is then

M =


(1 + s1)(1−m12) (1 + s2)m12

(1 + s1)m21 (1 + s2)(1−m21)

 , (S20)

and the maximal eigenvalue of this matrix is

ρ =
1
2

(√
4(m12 + m21 − 1)(1 + s1)(1 + s2) + (m12(1 + s1) + m21(1 + s2)− 2− s1 − s2)2+

2−m12(1 + s1)−m21(1 + s2) + s1 + s2) .

(S21)

We normalize the left and right eigenvectors corresponding to ρ and normalize them according to (S8). The

full forms of u and v are neither very readable nor informative, and hence we do not show them here.

All calculations can be readily checked using a computer algebra software such as Mathematica. Following
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Aeschbacher and Bürger (2014), B can be written as

B =
2

∑
i=1

ui

2

∑
j=1

vj Mij + ρ(ρ− 1)
2

∑
j=1

ujv2
j , (S22)

where, Mij are the elements of the reproduction mean matrix M (see (S20)).

Now we have all the ingredients necessary to calculate p(h) according to (S10). To proceed further, however,

we first identify conditions for slight supercriticality and then perform a weak selection approximation to

obtain our main results.

We notice that for s1 = 0 and s2 = 0, the maximal eigenvalue is ρ = 1. Furthermore, for s2 < 0 and

s1 = 0, we get that ρ < 1, and for s2 = 0 and s1 > 0, we get ρ > 1. We will thus consider a weak-selection

approximation and rescale all model parameters by s1:

χij =
mij

s1
, ζ =

s2

s1
, χij, ζ < ∞ . (S23)

The Taylor expansion of ρ with respect to s1 is then

ρ = 1 +
1
2

(
1− χ12 − χ21 + ζ +

√
(χ12 + χ21)2 + (1− ζ)2 − 2(χ12 − χ21)(1− ζ)

)
s1 +O(s2

1) . (S24)

and we write ρ = 1 + s1c̃ + O(s2
1). For small s1, c̃ needs to be finite and positive. We find that c̃ > 0 if

χ21 > ζ(1− χ12). Also, for constant χij and ζ, c̃ < ∞. As a matter of fact, when χ21 → ∞, c̃ = 1, and the

assumption of slight supercriticality holds. This corresponds to a scenario in which migration from the deme

in which the mutant has a disadvantage acts as a source. If χ12 → ∞, c̃ = ζ < 0, and the branching process

will be sub-critical in this case. Then, the deme where the mutation is detrimental acts a sink. Finally, when

ζ → −∞, c̃ = 1− χ12, and the process is slightly supercritical as long as χ12 < 1, that is, as long as migration

from deme 1 to deme 2 is of the same order of magnitude of s1.

When looking at the symmetric case where m12 = m21 = m/2 = χs1, we can calculate that c̃ = 1/2(1 +

ζ − 2χ +
√

1− 2ζ + ζ2 + 4χ2). In general, we find that c̃ > 0 if χ > ζ/(1 + ζ). When looking at a mutation

strongly deleterious in deme 2, when ζ → −∞, c̃ = 1− χ, meaning that if χ < 1 the process is supercritical

(hence for m/2 < s1). When migration is very strong, χ → ∞, c̃ = 1 + ζ, meaning that the process remains

supercritical for ζ > −1 (this means that |s2| < s1). We next calculate equation (S10) using the rescaled

variables defined in (S23), and perform a Taylor expansion in s1, ignoring second- and higher-oder terms. The

6 Matteo Tomasini et al.



full calculations are technically not very difficult but lengthy and cumbersome and are hence not shown here.

After changing back to the original variables according to (S23), and defining µij = 2mij/λ, σ = (s1 − s2)/λ,

with λ =
√
(m12 + m21)2 + (s1 − s2)2 − 2(m12 −m21)(s1 − s2) we can write the establishment probabilities as

p(1) = s1

[
1−

(µ12 − µ21

2

)
+ σ

]
+ s2µ12 ,

p(2) = s1µ21 + s2

[
1 +

(µ12 − µ21

2

)
− σ

]
.

(S25)

In the main text we further defined ∆µ = (µ12 − µ21)/2 for brevity. Since equations (S25) can have negative

values when the branching process is sub-critical, we set the establishment probabilities to zero when this is

the case. Hence, we redefine p(i) = max(p(i), 0). Equations (4)–(5) from the main text are readily obtained from

(S25) with m12 = m21 = m/2.

Maximum of p(i)

For the following computations, we write m12 and m21 as a function of their ratio, γ = m21/m12. Hence we

define m12 = m̃ and m21 = m̃γ. Then, the maximum of p(2) with respect to m̃ is at

m(2)
max =

s1(s2 − s1)

s1(γ− 1) + 2s2
. (S26)

Meanwhile, p(1) does not have any valid maximum for the range s1 > 0 > s2. On one hand, the derivative is

∂p(1)

∂m̃
= 0 =⇒ m(1)

max =
s2(s1 − s2)

2s1γ + s2(1− γ)
. (S27)

We can easily calculate when (S27) yields a positive result:

m(1)
max > 0 =⇒ γ <

s2

s2 − 2s1
. (S28)

On the other hand, p(1)(m̃ = m(1)
max) > 0 if

γ >
s2

s2 − 2s1
. (S29)

But condition (S29) for γ does not overlap with (S28), which means that p(1) has no valid positive maximum.

Furthermore, the limit for no migration is of course p(1) = 2s1, while for strong migration we will have

p(1) = 2(γs1 + s2)/(1 + γ). In the scenario where s2 < 0 < s1, the limit of strong migration will always be

smaller of the limit for weak migration, which means that p(1) is monotonically decreasing.
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Appendix B: Correction for density regulation

Here we present a version of the symmetric migration model in which we modify the offspring distribution in

the branching process to account for the effects of deme-independent density regulation in finite populations

(soft selection, sensu Wallace (1975)). Consider a model with finite poulation size and let κ1 and κ2 denote the

carrying capacities of deme 1 and 2, respectively. The larger deme then acts as a source, that is, it sends out

more migrants than it receives. We assume that density regulation acts after migration and brings each deme

back to its carrying capacity instantaneously. The number of individuals in deme i after migration but before

density regulation are given by

N′1 = κ1(1−m) + κ2m, and N′2 = κ1m + κ2(1−m). (S30)

Density regulation will then change the number of individuals in each deme by a factor

δi =
κi

κi(1−m) + κjm
; i, j ∈ {1, 2}, i 6= j , (S31)

We now introduce this in the branching process framework by modifying the absolute fitness of individuals in

deme i (see table 1) to wi = (1 + si)δi. Then, the absolute fitness of a mutant in deme i will be

1 + si,eff = (1 + s1)δi . (S32)

The generating functions are

f1(x1, x2) = e(1+s1,eff)(1−m
2 )(x1−1)+(1+s2,eff)

m
2 (x2−1) ,

f2(x1, x2) = e(1+s1,eff)
m
2 (x1−1)+(1+s2)(1−m

2 )(x2,eff−1) ,
(S33)

and the mean reproduction matrix is

M =


(1 + s1,eff)(1− m

2 ) (1 + s2,eff)
m
2

(1 + s1,eff)
m
2 (1 + s2,eff)(1− m

2 )

 , (S34)
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From this, following the same procedure as Appendix A, we find the linearized solution

p(1)dens =
1
2

m
[(

1− κ2

κ1

)
− 1

2
µ(κ1 − κ2)

(
κ1 +

κ2
2

κ1

)]
+s1

[
1 + σκ1κ2 +

1
2

µ(κ1 − κ2)(κ1 + 2κ2)

]
,

+s2

[
µκ2

κ1 + κ2

2

]
p(2)dens =

1
2

m
[(

1− κ1

κ2

)
+

1
2

µ(κ1 − κ2)

(
κ2

1
κ2

+ κ2

)]
+s1

[
µκ1

κ1 + κ2

2

]
+s2

[
1− σκ1κ2 −

1
2

µ(κ1 − κ2)(2κ1 + κ2)

]
,

(S35)

where we defined σ = (s1 − s2)/λdens and µ = m/λdens, with

λdens =
√
(s1 − s2)2κ2

1κ2
2 + 2m(s1 − s2)κ1κ2(κ1 − κ2)

κ1+κ2
2 + 1

4 m2(κ2
1 + κ2

2)
2.
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Appendix C: Comparisons with simulations and previous results

Gavrilets and Gibson (2002) calculated the probability of fixation of an allele in a two-deme model with

migration using a diffusion approximation. Comparing their numerical result to our analytical form, we see

good agreement between the two models. Gavrilets and Gibson (2002) calculated fixation probabilities, while
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Figure S1 Comparison between the model described in Gavrilets and Gibson (2002) and the one presented
in this work (equations (4) and (5)). The fixation probability for the model presented in Gavrilets and Gib-
son (2002) is calculated for 6 points. The thick dotted line shows the limit for which a polymorphic equilib-
rium is maintained in that model, corresponding to a case with establishment but not fixation. (A) Compari-
son with p(1). (B) Comparison with p(2). For both figures, m = 0.05, s1 + s2 = 0.02.

our formula deals with establishment. While for some parameters establishment is equivalent to fixation, this is

not true in general ; an allele may become permanently established in a polymorphic equilibrium without ever

reaching fixation. The black dotted vertical line in figure S1 represents the deterministic limit for the existence

of a polymorphic equilibrium. The fact that our solution also takes into account established polymorphisms

explains why the two models do not match on the right of the dotted line.

In a similar model to the one that we study in the present work, Yeaman and Otto (2011) used the asymptotic

rate of increase in frequency of a rare allele to approximate the selection coefficient of the mutation itself.

They then used Kimura’s formula to calculate the fixation probability of such mutation. Figure S2 shows the

comparison between the two approaches.

Setup of simulations (see figure 5 in main text)

In the simulations, we start with a population of N = κ1 + κ2 individuals (κi is the carrying capacity of deme

i), and we inject one mutant copy in either deme 1 or deme 2. Both the wildtype and the mutant individuals
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Figure S2 Comparison between the model described in Yeaman and Otto (2011) and our own. For this to
work, we assume co-dominance in Yeaman and Otto’s model, while we take a very large population size.
s1 = −s2 = 0.02.

follow a logistic growth model. The number of wildtype individuals in the next generation N? is a Poisson

distributed variable with mean

N? = N · R = N · R0

1 + (R0 − 1)N
K

(S36)

(also see Beverton and Holt (1957)). Similarly, the number of mutants in the next generation is a Poisson

distributed variable with mean

N?
mut = Nmut · R · (1 + si) , (S37)

where si is the selective coefficient in deme i. We let the system evolve until the number of mutants reaches

a predefined limit or until there are no mutants left in the population. The threshold for which we stop has

to be of the order of 1/s1 in order to escape drift. We assume that if this threshold is reached in the deme

where the mutation is advantaged, establishment has occurred. In our simulations we set the limit to 200

individual which is 4 times larger than 1/s1 in all considered cases, but we noticed low variability with respect

to this parameter. If after 20’000 generations the threshold is not reached, the replicate is counted as not having

reached establishment. We performed 50’000 replicates for each parameter combination.

Strongly deleterious mutation in one deme

Our approximation holds remarkably well also in cases where the mutation is strongly deleterious in one of

the two demes (see figure S3).
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Figure S3 Comparison between simulations and analytical prediction for the establishment probabilities of
a mutation strongly deleterious in deme 2. For both figures, s1 = 0.05 and s2 = −0.9. The exact solution
is calculated numerically through 10’000 iterations of the probability generating functions (2) and (3) (see
equation 1 in main text). (A) Probability of establishment as a function of the migration rate for a mutant
born in deme 1. (B) Probability of establishment as a function of the migration rate for a mutant born in
deme 2.
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