Functional analysis of Hif1 histone chaperone in Saccharomyces cerevisiae

Nora S. Dannah ${ }^{\dagger}$, Syed Nabeel-Shah ${ }^{\dagger}$, Christoph F. Kurat ${ }^{\S}$, Sarah Sabastinos ${ }^{\dagger}$, and Jeffrey Fillingham ${ }^{\dagger \text {,* }}$

\dagger Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, M5B 2K3 Canada
${ }^{\S}$ Clare Hall Laboratory, Francis Crick Institute, South Mimms, Hertfordshire EN6 3LD, UK
* To whom correspondence should be addressed: Jeffrey Fillingham, Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada, M5B2K3 Tel.: 416-979$5000 \times 2123$; E-mail: jeffrey.fillingham@ryerson.ca

Supplementary Data

Supplementary table S1: Yeast strains used in this work
Supplementary table S2: Primers used in this work
Supplementary table S3: Accession number of the sequences used in this study

Supplementary figure legends

Supplementary figure 1: A- Structural comparison of fungal and human sNASP homologs. Acidic region which interrupts TPR2 is indicated as a groove. B-E: TPR sequence alignment of predicted TPR1 to TPR4 (B-E, respectively), across various fungal lineages. TPR2 and TPR4 insertions are indicated as gaps and are highlighted with red arrows. F: Sequence alignment of acidic region which interrupts TPR2 from representative fungal lineages. G: Sequence alignment of TPR4 interruption region from representative fungal lineages. Note: Residues are colored according to Clustal X coding system (1).

Supplementary figure 2: Sequence alignment of C-terminal amino acids of the protein encompassing the putative nuclear localization signal from representative fungal lineages. Residues are colored according to ClustalX coding system (1).

Supplementary figure 3: Schematic representation of Hif1 deletion mutants. A: Hif1 internal deletions lacking different TPR regions or acidic region and C-terminal external deletions are depicted. Acidic region which interrupts TPR2 is indicated as a groove. Note: The positions of deletions on the Hif1 are provided in the table as figure A.1.

Supplementary figure 4: A: Indirect immunofluorescence analysis of 12MYC tagged full length Hif1 and truncated mutants carrying C-terminal external deletions. B: IF analysis of 12MYC tagged full length Hif1 and truncated mutants carrying internal deletions. Top panels were stained with DAPI to capture the nuclei orientation. Middle panels were probed with anti-MYC antibody to examine the localization of either full length Hif1 (F.L) or truncated
mutants. Cells transfected with an empty vector were used as a control. The bottom panel represents merge of DAPI and anti-MYC staining. Red arrows represent the position of nuclei.

Supplementary figure 5: Analysis of hifl 1Δ hat 2Δ double knockout cells for growth defects on YPD media. (A) Strains were grown to an OD at 600 nm of $\cong 0.5$ before being plated at five-fold serial dilutions on YPD. (B) Strains were cloned into pRB4151-2MYC lacking the Leucine amino acid (-Leu) for selectivity. Hif1 F.L. was transformed into hif1 $\Delta /$ hat 2Δ and hif1 Δ to rescue the phenotype. (C, D): Various Hif1 truncations were expressed back into hifl Δ hat 2Δ double knockout cells to examine their ability to rescue the phenotype. Note: C1 and D1 represent 3 days of growth. (E) Western blot analysis of whole cell extracts to examine the expression of Hif1 truncation mutants in hif1 Δ hat 2Δ double knockout cells.

Supplementary figure 6: Sensitivity of hif1 Δ, hat1 Δ, hat 2Δ and $l s m 1 \Delta$ cells to genotoxic agent hydroxyurea. A-D: Ten-fold serial dilutions of strains WT, hif1 Δ, hat 1Δ, hat 2Δ, $\operatorname{lsm} 1 \Delta$ and $\operatorname{spt} 2 \Delta$ were spotted on YPD or YPD medium containing the indicated dose of genotoxic agent hydroxyurea (HU).

Supplementary figure 7: A: Network representation of protein-protein and genetic interaction data of Hif1.Nodes and edges represent genes/proteins and interactions between them, respectively. Edges connecting genetic interactions are shown in green whereas physical interactions are depicted in pink. The width of edges represents the confidence for a given functional link. The width of the node is proportional to the number of functional links in the network. The Hif1 node is represented in black, B: Network representation of proteinprotein and genetic interaction data of Hif1, Hat1, Hat2 and Asf1 (depicted in blue).Nodes and edges represent genes/proteins and interactions between them, respectively. C: Venn diagram of shared nodes among Hif1, Hat1, Hat2 and Asf1.

Supplementary citation

1. Larkin,M.A., Blackshields,G., Brown,N.P., Chenna,R., McGettigan,P.A., McWilliam,H., Valentin,F., Wallace,I.M., Wilm,A., Lopez,R., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-8.

\#	Code	Strain Name	Marker	Strain Version	Source
1	JF087	pRB415ADH1-12MYC $+\Delta$ (+TPR3Domain)	Amp	Bacterial strain	This study
2	JF086	pRB415ADH1-12MYC $+\Delta$ (+TPR4Domain)	Amp	Bacterial strain	This study
3	JF076	pRB415ADH1-12MYC $+\Delta(+$ TPR4 $)$	Amp	Bacterial strain	This study
4	JF080	pRB415ADH1-12MYC $+\Delta(+$ TPR4 +35)	Amp	Bacterial strain	This study
5	JF077	pRB415ADH1-12MYC+ ${ }^{\text {B B.P.(Basic Patch) }}$	Amp	Bacterial strain	This study
6	JF078	pRB415ADH1-12MYC+ Full Length F.L.	Amp	Bacterial strain	This study
7	JF079	pRB415ADH1-12MYC+ \triangle TPR1	Amp	Bacterial strain	This study
8	JF082	pRB415ADH1-12MYC+ TPRR2-1 $^{\text {st }}$	Amp	Bacterial strain	This study
9	JF084	pRB415ADH1-12MYC $+\triangle \mathrm{ACD}$ (Acidic region)	Amp	Bacterial strain	This study
10	JF088	pRB415ADH1-12MYC+ \triangle TPR2 Entire	Amp	Bacterial strain	This study
11	JF083	pRB415ADH1-12MYC+ \triangle TPR3	Amp	Bacterial strain	This study
12	JF085	pRB415ADH1-12MYC + \triangle TPR4	Amp	Bacterial strain	This study
13	JF200	W303+ plasmid	-LEU	Yeast strain	This study
14	JF201	Hat1-TAP 4 hifl + plasmid	-LEU	Yeast strain	This study
15	JF202	12MYC-Hif1(F.L.)	-LEU	Yeast strain	This study
16	JF243	Hat1-TAP Lhifl $^{\text {+ }}$ 12MYC-Hif1 Δ (+TPR3Domain)	-LEU	Yeast strain	This study
17	JF242	Hat1-TAP Lhifl $^{\text {+ }} 12 \mathrm{MYC-Hif1} \Delta$ (+TPR4Domain)	-LEU	Yeast strain	This study
18	JF203	Hat1-TAP 4 hifl $+12 \mathrm{MYC}-\mathrm{Hif} 1 \Delta(+$ TPR4)	-LEU	Yeast strain	This study
19	JF204	Hat1-TAP 4 hifl $+12 \mathrm{MYC}-H i f 1 \Delta(+$ TPR4 +35)	-LEU	Yeast strain	This study
20	JF206	Hat1-TAP $\Delta h i f 1+12 \mathrm{MYC-Hif1} \Delta$ B.P.	-LEU	Yeast strain	This study
21	JF205	Hat1-TAP 4 hifl + 12MYC-Hif1 +Full Length F.L.	-LEU	Yeast strain	This study
22	JF207	Hat1-TAP $4 h i f 1+12 \mathrm{MYC}$-Hifl Δ TPR1	-LEU	Yeast strain	This study
23	JF208	Hat1-TAP dhifl $^{+12 \mathrm{MYC}-H i f 1 ~} \Delta$ TPR2-1 $1^{\text {st }}$	-LEU	Yeast strain	This study
24	JF209	Hat1-TAP 4 hifl +12 MYC -Hifl \triangle ACD	-LEU	Yeast strain	This study
25	JF241	Hat1-TAP 4 hifl $+12 \mathrm{MYC-Hif1} \triangle$ TPR2 Entire	-LEU	Yeast strain	This study
26	JF210	Hat1-TAP $\Delta h i f 1+12 \mathrm{MYC}$-Hif1 Δ TPR3	-LEU	Yeast strain	This study
27	JF211	Hat1-TAP 4 hifl + 12MYC-Hifl Δ TPR4	-LEU	Yeast strain	This study
28	JF167	pYES+ WT	-URA	Yeast strain	This study
29	JF169	pYES+ hifl $\triangle:$ KAN	-URA	Yeast strain	This study
30	JF175	pYES+ hal $\Delta:$ KAN	-URA	Yeast strain	This study

31	JF177	pYES+ hat $2 \Delta:: \mathrm{KAN}$	-URA	Yeast strain	This study
32	JF257	pYES+ spt $2 \Delta:: \mathrm{KAN}$	-URA	Yeast strain	This study
33	JF171	pYES+ lsm1 Δ	-URA	Yeast strain	This study
34	JF168	pYES+ H3+ WT	-URA	Yeast strain	This study
35	JF170	pYES+ H3+ hifl $\Delta:$:KAN	-URA	Yeast strain	This study
36	JF176	pYES+ H3+ hal $\Delta:$:KAN	-URA	Yeast strain	This study
37	JF178	pYES+ H3+ hat $2 \Delta:: \mathrm{KAN}$	-URA	Yeast strain	This study
38	JF258	pYES+ H3+ spt $2 \Delta:: \mathrm{KAN}$	-URA	Yeast strain	This study
39	JF172	pYES+ H3+ lsm1 $\Delta:$ KAN	-URA	Yeast strain	This study
40	JF248	pYES+ H3+ 12MYC-Hif1 Δ (+TPR3Domain)	-LEU -URA	Yeast strain	This study
41	JF247	pYES+ H3+ 12MYC-Hif1 Δ (+TPR4Domain)	-LEU -URA	Yeast strain	This study
42	JF246	pYES+ H3+ 12MYC-Hif1 Δ (+TPR4)	-LEU -URA	Yeast strain	This study
43	JF245	pYES+ H3+ 12MYC-Hif1 Δ (+TPR4 +35)	-LEU -URA	Yeast strain	This study
44	JF244	pYES+ H3+ 12MYC-Hif1 Δ B.P.	-LEU -URA	Yeast strain	This study
45	JF250	pYES+ H3+ 12MYC-Hif1 +Full Length (F.L.)	-LEU -URA	Yeast strain	This study
46	JF251	pYES+ H3+ 12MYC-Hif1 \triangle TPR1	-LEU -URA	Yeast strain	This study
47	JF252	pYES+ H3+ 12MYC-Hif1 \triangle TPR2-1 ${ }^{\text {st }}$	-LEU -URA	Yeast strain	This study
48	JF253	pYES+ H3+ 12MYC-Hifl \triangle ACD	-LEU -URA	Yeast strain	This study
49	JF254	pYES+ H3+ 12MYC-Hif1 \triangle TPR2 Entire	-LEU -URA	Yeast strain	This study
50	JF255	pYES+ H3+ 12MYC-Hif1 \triangle TPR3	-LEU -URA	Yeast strain	This study
51	JF256	pYES+ H3+ 12MYC-Hif1 \triangle TPR4	-LEU -URA	Yeast strain	This study
52	JF249	pYES+ H3+ 12MYC-4hifl	-LEU -URA	Yeast strain	This study
53	JF110	Spt2-TAP+ Hif1-13MYC	-	Yeast strain	This study
54	JF102	Spt2-TAP+ Hat1-13MYC	-	Yeast strain	This study
55	JF111	Spt2-TAP+ Hat2-13MYC	-	Yeast strain	This study
56	JF300	hifl $\Delta:$:NAT+ plasmid	-LEU	Yeast strain	This study
57	JF301		-LEU	Yeast strain	This study
58	JF306		-LEU	Yeast strain	This study
59	JF305	hifl $:$: NAT+ 12MYC-Hif1 Δ (+TPR4Domain)	-LEU	Yeast strain	This study
60	JF304		-LEU	Yeast strain	This study
61	JF303	hifl $\Delta:: \mathrm{NAT}+12 \mathrm{MYC}-\mathrm{Hif1} \Delta(+\mathrm{TPR} 4+35)$	-LEU	Yeast strain	This study

62	JF302		-LEU	Yeast strain	This study
63	JF307	hifl $\triangle:: \mathrm{NAT}+12 \mathrm{MYC-Hif1} \Delta$ TPR1	-LEU	Yeast strain	This study
64	JF308		-LEU	Yeast strain	This study
65	JF309	hifl $\Delta:$:NAT+ 12MYC-Hif1 \triangle ACD	-LEU	Yeast strain	This study
66	JF310		-LEU	Yeast strain	This study
67	JF311	hifl $\triangle:: \mathrm{NAT}+12 \mathrm{MYC}-H i f 1 \Delta$ TPR3	-LEU	Yeast strain	This study
68	JF312		-LEU	Yeast strain	This study
69	JF313	Hat2-TAP 4 hifl + plasmid	-LEU	Yeast strain	This study
70	JF314	Hat2-TAP $4 h i f 1+12 \mathrm{MYC-Hif} 1$ (F.L.)	-LEU	Yeast strain	This study
71	JF319	Hat2-TAP 4 hifl + 12MYC-Hifl Δ (+TPR3Domain)	-LEU	Yeast strain	This study
72	JF318	Hat2-TAP $\Delta h i f 1+12 \mathrm{MYC-Hifl} \Delta$ (+TPR4Domain)	-LEU	Yeast strain	This study
73	JF317	Hat2-TAP Uhifl $^{\text {+ }}$ 12MYC-Hif1 $\Delta(+$ TPR4)	-LEU	Yeast strain	This study
74	JF316	Hat2-TAP 4 hifl $+12 \mathrm{MYC}-H i f 1 \Delta(+$ TPR4 +35)	-LEU	Yeast strain	This study
75	JF315	Hat2-TAP $\Delta h i f 1+12 \mathrm{MYC-Hif1} \Delta$ B.P.	-LEU	Yeast strain	This study
76	JF320	Hat2-TAP $4 h i f 1+12 \mathrm{MYC}-H i f 1 \Delta T P R 1$	-LEU	Yeast strain	This study
77	JF321	Hat2-TAP $\Delta h i f 1+12 \mathrm{MYC}-$ Hif1 Δ TPR2- $1^{\text {st }}$	-LEU	Yeast strain	This study
78	JF322	Hat2-TAP 4 hifl $+12 \mathrm{MYC-Hif1} \triangle$ ACD	-LEU	Yeast strain	This study
79	JF323	Hat2-TAP dhifl $^{\text {+ 12MYC-Hif1 }} \triangle$ TPR2 Entire	-LEU	Yeast strain	This study
80	JF324	Hat2-TAP $4 h i f 1+12 \mathrm{MYC}$-Hifl Δ TPR3	-LEU	Yeast strain	This study
81	JF325	Hat2-TAP $\Delta h i f 1+12 \mathrm{MYC}-H i f 1 \Delta T P R 4$	-LEU	Yeast strain	This study
82	JF326	Asf1-TAP 4 hifl + plasmid	-LEU	Yeast strain	This study
83	JF327	Asf1-TAP 4 hifl + 12MYC-Hif1(F.L.)	-LEU	Yeast strain	This study
84	JF332	Asf1-TAP $\Delta h i f 1+12 \mathrm{MYC-Hif1} \Delta$ (+TPR3Domain)	-LEU	Yeast strain	This study
85	JF331	Asf1-TAP $\Delta h i f 1+12 \mathrm{MYC-Hifl} \Delta$ (+TPR4Domain)	-LEU	Yeast strain	This study
86	JF330	Asf1-TAP Δ hifl +12 MYC -Hifl Δ (+TPR4)	-LEU	Yeast strain	This study
87	JF329	Asf1-TAP 4 hifl $+12 \mathrm{MYC-Hif1} \Delta(+\mathrm{TPR} 4+35)$	-LEU	Yeast strain	This study
88	JF328	Asf1-TAP $\Delta h i f 1+12 \mathrm{MYC-Hifl} \Delta$ B.P.	-LEU	Yeast strain	This study
89	JF333	Asf1-TAP $4 h i f 1+12 \mathrm{MYC}$-Hif1 Δ TPR1	-LEU	Yeast strain	This study
90	JF334	Asf1-TAP $\Delta h i f 1+12 \mathrm{MYC}-\mathrm{Hif} 1 \Delta$ TPR2- $1^{\text {st }}$	-LEU	Yeast strain	This study
91	JF335	Asf1-TAP 4 hifl $+12 \mathrm{MYC-Hif1} \triangle$ ACD	-LEU	Yeast strain	This study
92	JF336	Asf1-TAP $\Delta h i f 1+12 \mathrm{MYC}-$ Hif1 Δ TPR2 Entire	-LEU	Yeast strain	This study

93	JF337	Asf1-TAP 4 hifl + 12MYC-Hif1 ${ }^{\text {STPR3 }}$	-LEU	Yeast strain	This study
94	JF338	Asf1-TAP 4 hifl + 12MYC-Hifl Δ TPR4	-LEU	Yeast strain	This study
95	JF339	hifl Δ hatl Δ	-	Yeast strain	This study
96	JF340	hifl Δ hat 2Δ	-	Yeast strain	This study
97	JF341	hifl $\Delta+$ plasmid	-LEU	Yeast strain	This study
98	JF342	hat $1 \Delta+$ plasmid	-LEU	Yeast strain	This study
99	JF343	$H a t 2 \Delta$ + plasmid	-LEU	Yeast strain	This study
100	JF344	hifl Δ hat $2 \Delta+$ plasmid	-LEU	Yeast strain	This study
101	JF345	hifl Δ hat $2 \Delta+$ Hif1(F.L.)	-LEU	Yeast strain	This study
102	JF346	hifl Δ hat $2 \Delta+12 \mathrm{MYC-Hif1} \Delta$ B.P.	-LEU	Yeast strain	This study
103	JF347	hifl Δ hat $2 \Delta+12 \mathrm{MYC-Hif1} 1$ TPR1	-LEU	Yeast strain	This study
104	JF348	hifl Δ hat $2 \Delta+12 \mathrm{MYC-Hif1} \Delta$ TPR2-1 ${ }^{\text {st }}$	-LEU	Yeast strain	This study
105	JF349	hifl Δ hat $2 \Delta+12 \mathrm{MYC}-H i f 1 \Delta \mathrm{ACD}$	-LEU	Yeast strain	This study
106	JF350	hifl Δ hat $2 \Delta+12 \mathrm{MYC}-H i f 1 \Delta$ TPR2 Entire	-LEU	Yeast strain	This study
107	JF351	hif1 Δ hat $2 \Delta+12 \mathrm{MYC}$-Hif1 Δ TPR3	-LEU	Yeast strain	This study
108	JF352	hifl Δ hat 2Δ + 12MYC-Hif1 Δ TPR4	-LEU	Yeast strain	This study

Table S2

A: DNA sequencing primers

Sequencing primers	Sequence
HJ559	5'-cgttgtaaaacgacggccag-3'
AJJ296	5'-tggactgaagttagccaattc-3'
AJL320	5'-cagatcatttcaaagtaaat-3'

B: PCR primers

PCR primers	Sequence
HIF1F(BAMH1)	5'-CCCGGATCCatgaaactaagggcagaagac-3'
HIF1F(dTPR1)	5'-ggtttgttgcctgatcctgaa-3'
HIF1R(dTPR1)	5'-aggatcaggcaacaaaccatcaatttgaactttatg-3'
HIF1F(dACD)	5'-cttcgcaagtctggtttccac-3'
HIF1R(dACD)	5'-gtaaatgtggaaaccagacttgcgaagcccaaacagattaccaga-3'
HIF1F(dTPR2a)	5'-gacgctcttctggcaggt-3'
HIF1R(dTPR2a)	5'-acctgccagaagagcgtcatcaggcaacaaaccatc-3' $^{\prime}$ HIF1F(dTPR2entire)
5'-ttggacctactggcgcag-3'	
HIF1R(dTPR2entire)	5'-gtccgccagtaggtccaaatcaggcaacaaaccatc-3'
HIF1F(dTPR3)	5'-aaacccgcagaacaagta-3'
HIF1R(dTPR3)	5'-tacttgttctgcgggtttgatgcgcaatctgctgtt-3'
HIF1F(dTPR4)	5'-atgactacaagacccaag-3'
HIF1R(dTPR4)	5'-cttgggtcttgtagtcatcaccttctcagttacttg-3'
HIF1R(+TPR3Domain)	5'-CCCCTGCAGtcagatgcgcaatctgctgttctc-3'
HIF1R(+TPR4Domain)	5'-CCCCTGCAGtcacaccttctcagttacttgttc-3'
HIF1R(+TPR4-PSTI)	5'-CCCCTGCAGtcagtgttttcaagcagagcctt-3'
HIF1R(+TRP4+35-PSTI)	5'-CCCCTGCAGtcacctcttggagccgtgctg-3'
HIF1R(-BASIC-PSTI)	5'-CCCCTGCAGtcagaccagttgagagagatcatt-3'
HIF1R(PSTI)	5'-CCCCTGCAGtcaatgccttctaggcttctt-3'
yHIF1F	5'-aaggacagcgagttacagcaggcaa-3'
yHIF1R	5'-gctagtgtttcttgctccttatgaa-3'

C: PCR primers- deletion

PCR primers	Sequence
HIF1F	5'-cggcagtggaatcttaccacttctcag-3'
HIF1R	5'-gtagtaagtatgtcatttcagggatg-3'
HIF1conF	5'-acttgcaagagcactcgtagctccc-3'
NATF	5'-acatggaggcccagaataccet-3'
NATR	5'-cagtatagcgaccagcattca-3'

Supplementary table S3

Accession (UniProt KB)	Fungal lineage
M7PAE8	Pneumocystis murina
B6K743	Schizosaccharomyces japonicus
S9VTK9	Schizosaccharomyces cryophilus
Q9USQ4	Schizosaccharomyces pombe
S9Q1K3	Schizosaccharomyces octosporus
Q12373	Saccharomyces cerevisiae
K0KPL0	Wickerhamomyces ciferrii
Q6CS41	Kluyveromyces lactis
W0T796	Kluyveromyces marxianus
W0W828	Zygosaccharomyces bailii
C5DQJ4	Zygosaccharomyces rouxii
G8BZL2	Tetrapisispora phaffii
Q754F8	Ashbya gossypii
A5DWT8	Lodderomyces elongisporus
Q6BWS5	Debaryomyces hansenii
Q6C817	Yarrowia lipolytica
G8B7Q7	Candida parapsilosis
Q59RB9	Candida albicans
J3K3P4	Coccidioides immitis
B6Q370	Penicillium marneffei
A0A017SC82	Aspergillus ruber
W7ECX2	Bipolaris victoriae
W6ZKF9	Bipolaris oryzae
A0A014QWQ9	Metarhizium robertsii
E9F7L3	Metarhizium anisopliae
W9CAV8	Sclerotinia borealis
G2XVN4	Botryotinia fuckeliana
U4LBR5	Pyronema omphalodes
D5GBR5	Tuber melanosporum
S8A4G4	Dactylellina haptotyla
F4NW57	Batrachochytrium dendrobatidis
I1BKA7	Rhizopus delemar
S2JYJ6	Mucor circinelloides f. circinelloides
A0A015LBY5	Rhizophagus irregularis
J9VLV7	Cryptococcus neoformans var. grubii
J8TYB0	Trichosporon asahii var. asahii
D5KY45	Tremella fuciformis
E6QYX1	Cryptococcus gattii
M7XBY6	Rhodosporidium toruloides
K5Y1H8	Agaricus bisporus var. burnettii
B0CU79	Laccaria bicolor
D6RNQ5	Coprinopsis cinerea
I2G0Q0	Ustilago hordei
Q4PBI3	Ustilago maydis
U5H4M9	Microbotryum violaceum

Supplementary Figure 1-A

Supplementary Figure 1-B

Pneumocystis murina

Schizosaccharomyces japonicus
Schizosaccharomyces cryophilus
Schizosaccharomyces pombe
Schizosaccharomyces octosporus
Saccharomyces cerevisiae
Wickerhamomyces ciferrii
Kluyveromyces lactis
Kluyveromyces marxianus
Zygosaccharomyces bailii
Zygosaccharomyces rouxii
Tetrapisispora phaffii
Ashbya gossypii
Lodderomyces elongisporus
Debaryomyces hansenii
Yarrowia lipolytica
Candida parapsilosis
Candida albicans
Coccidioides immitis
Penicillium marneffei
Aspergillus ruber
Bipolaris victoriae
Bipolaris oryzae
Metarhizium robertsii
Metarhizium anisopliae
Sclerotinia borealis
Botryotinia fuckeliana
Pyronema omphalodes
Tuber melanosporum
Dactylellina haptotyla
Batrachochytrium dendrobatidis
Rhizopus delemar
Mucor circinelloides
Rhizophagus irregularis
Cryptococcus neoformans
Trichosporon asahii
Cryptococcus gattii
Rhodosporidium toruloides
Agaricus bisporus
Laccaria bicolor
Coprinopsis cinerea
Ustilago hordei
Ustilago maydis
Microbotryum violaceum

AYSVVNEADRLYYKKDY EKAVEKYSLALER I VRE I DQLVVQGNKAF SQKHYEI AAEKYSDALEVLEQK I EKF I TQGNMAYAQKDY ESAVEKYSQALME S EK I I EQLVTQGNMAYAQKNY EEAVDKYGQALMQS ES I MEKF I TQGNMAYAQKDY ESAVEKYSQALI ES ENT MERQVQI AKDLLAQKK F LEAAKRCQQTLDS LPKD V SKLLESGAK SYAS KEF EDAVSNYGEACQ I Y SND FDKL LTEGAKHYAGKNY ELAVDSYADLNQLYDS E I QEL LTEGSKQYAS ENF ELAVDAYAEVNELHDAE VQAL L I EGAKYSAS DDV EKAAKCYARVLD I - - VQTLL I EGAKYSAS DDAEKAAKCYARILDLES - I KTLVVEGAKYTANSDLANASKCYAELLDLESKT I QGL LAQAAKAYAS ENF EAAAELYAAVNEAAEAA I SKL I SEGSKAYAVKNY DLAGEKYAEACEKYSET I NELVAEGAKLYAAKE F DDASEKYAEACENF SNE I EQLVALGSKAYALKHYESATETLGQACEKYSDE VNQLVSEGSK SYAS KDY ELAS EKYGKACEVYSKE VAKL I SEGSRAYS S KDF DLAS EKYGEACEEYSK S LAELKRLAS AKEA I KDYNSAADLYSRAVE I QAEL LDNLVTRAAAKDAVKDYNAAAELYSQATEIQAQ I LGEL I TRAAA KDA I KDHNAAAELYSEATELQADL LSELSQVAS I HYS TKNF PAAAENYANAVE I QAEL LSEL SQVAS I HYS TKNF PAAAENYANAVE I QAEL LADL S AKGT A LYAHKQY EDAAE I FS RASVLQVDL LADL S AKGT ALYAHKQY EDAAE I FS RASVLQVDL LAEYCAKGTAEYAQKRY DDAVDHYAQAS ELQAE I LAEYCAKGTAEYAQKRYDDAVDHYAQAAELQAE I LEALKARAVKAYATKDF PQSVDIYGEACQLQSE I LATLKAQAAK SYAQKDYSAASDSYAQACELQSS I LAS LSAEAAKEYAHKNYAKAAELYASAAEQQAAV I PTL LAAGAQAYAMSNF S LAAEKLS I AS QLQTEM AQAL I KEGS EALYDKKYSVS I EKLGEACQLLDQL AQELFEQGKLAFNNGEYESSVTKLGEACQLL - QL I RLLTEEGTKAFKLKDYETAVLKYEEASQLAELH VEKLVAEGKKAVALHQWEQGVDRYATALDRMRLL VAKLVSEGKKA I ALRQWEEGVGKYADALDLQREL VEKLVAEGKKA I A LHEWEQGVDRYATALDRMRL L LDDHLARGI RALALRKYSDACDFLAQALESSTSK LESALEQAKRAFALKKY EQAVDFYATALEFATKE I ETA I EHAKR AFALRKY EQA I DHYATALELMTQK VELAVEQAKR AFALKKY EQAVEHYATALE I ATKK ARQL I DESKR HFALKE YAAS I DKVAHALEQL S S E ARQL I DEAKRHFALKEYAAASDKLALALEELSAS I AECMAAATRHFA LKQWS LAAEQASYAI EA I EKQ

Supplementary Figure 1-C
P. murina
S. japonicus
S. cryophilus
S. pombe
S.octosporus
S. cerevisiae
W. ciferrii
K. lactis
K. marxianus
Z. bailii
Z. rouxii
T. phaffii
A. gossypii
L. elongisporus
D. hansenii
Y. lipolytica
C. parapsilosis
C. albicans
C. immitis
P. marneffei
A. ruber
B. victoriae
B. oryzae
M. robertsii
M. anisopliae
S. borealis
B. fuckeliana
P. omphalodes
T. melanosporum
D. haptotyla
B. dendrobatidis
R. delemar
M. circinelloides
R. irregularis
C. neoformans
T. asahii
C. gattii
R. toruloides
A. bisporus
L. bicolor
C. cinerea
U. hordei
U. maydis
M. violaceum

ADVFY S YGRAL FHLAV----F S I AWE ALDF SRF L Y QKM RNVLWLYGRTLFEI AL----FGLAWE VLDLCRVLQTRA RN I LWLYGKSL F QVAV----F SVAWE VLDLTRVMQ TKA RNVLWLYGKSL FQ I A I----FNVAWE VLDL TRVMQ S KA RNI LWLYGRAL FQVAV----FNVAWE VLDLTRVMQ TKA PELFT I FAQAVYNMEV----YENAL D LLAQALML L GRP PDLLF LYGKALFQVAV----FE I AWE I LDLSRS LYEQS PEYLF LYGKALYQLAL----FENAWE ILELARS YYESS PDYL F LYGKALYQLAL----FENAWE ILELARS FYEIN PDVF I LLARCLYRLGL----FENGL E LLYRAR I MYMEP AE I YL LLARCLYR L GL---- FENGL E LLYRAR I MYME P PDHVMLLASCLYQLGV----FQNTLELLQVARI I YMEN PDFLF LYGRALWRAAA----LEAAWE VLELARTLYEEA GDLL L LYGKAL FQ S GV---- F EMAWM I LDVARG L F EGQ ADLLL LYGKSL FQS AV----FEVAWE I LDLTRS L F ENK GHLL F LYGRAL FQAGV---- FEVAWEVTDLARKL F EDE GDLLF LYGKALYQNGV----LEMAW I I LDATRAVFEEK ADLLF LYGKAV FQS GV----FEVAWE LLDLARALFEEK ADLLY S YGRCL YHVAV----F ENAF E TLDMARVL L SRQ ADLLY AYGKSLYNVGV----FANAF E VLDLAR I L L LKK ADLL F AYGKAL YNVAV---- FANAF E VLDLARVLY QKK AELL F YYGRAL YKVAV----F GNAYE I FELARV L Y E KQ AELL F YYGRALYKVAV----FGNAYE I FE LARV L Y E KQ AE I L F HYGRSL F KV GQ----LAT AF E I LDLARV C Y E KQ AE I L F HYGRSL FKVGQ----LATAF E I LDLARV CYEKQ AE I L F LYGRAL FKVAQ----LNLAF D I LDLARVL F EKR AE I L F LYGRAL FKVAQ----LN I AF D I LDLTRVL F EKR AQLLY LYGRALYRVAI----MAAAWS VLDLARVMFEKQ AHLLY LYGRSL FQVAL----F T LAWE I LDF ARV L F LKQ ADLLY LYGRALYHCGL---- FTLAWE VLDLARV F F NKR AE I L F HYGRAL LANAV----LE I AWE TFDLVR I I Y TEGDAYF MYGKAL LQYA I----FETAWN I LDAAR I I F EK GDAYF LYGQAL LQFAI ----FETAWD I LDVARV I F EK ADAL F NYGKAL I ENS I ----LNVAND VLI I ARD I YLD APLLL AYGKAL YDLAS----YNAAWE VLDVART I YEK I APLLLS YGKALYELAL----FNAAWEVLDVART I YARE APLLL AYGKAL YDLAS----YNAAWE VLDVART I YQK I VESLV LYGKAL LGSAI----LE S AF QMLDLART I LTTE ADLYF S YGRAL LENAV---- FNAAWE VLDLARA I YDRQ ADLYF LYGKAL LENA I----FNAAWE VLDLARA I YDKQ ADLYF S YGRAL LENA I----FNAAWE VLDLARA I YEKQ APVLH HYGRSL LENF I----LQVAF S VLDLARV I Y QR I AP I LQ LYGQSVLENFI----LQTAF S VLDLARV I YKRA ADALMLYGKAA LQNA I----LEGAYS AFEMVRA I WSRD
P. murina
S. japonicus
S. cryophilus
S. pombe
S. octosporus
S. cerevisiae
W. ciferrii
K. lactis
K. marxianus
Z. bailii
Z. rouxii
T. phaffii
A. gossypii
L. elongisporus
D. hansenii
Y. lipolytica
C. parapsilosis
C. albicans
C. immitis
P. marneffei
A. ruber
B. victoriae
B. oryzae
M. robertsii
M. anisopliae
S. borealis
B. fuckeliana
P. omphalodes
T. melanosporum
D. haptotyla
B. dendrobatidis
R. delemar
M. circinelloides
R. irregularis
C. neoformans
T. asahii
C. gattii
R. toruloides
A. bisporus
L. bicolor
C. cinerea
U. hordei
U. maydis
M. violaceum

ADTY D L LGE I SLENENFQQALVDFQS SLDLKIKI ADV L D L LGE I S LENE S FEQAAQDLQEALLWKQQV AD I L D L LGEL SLE I ENFAQAAEDLESALHWKVQV AD I Y D L LGELSLE I ENFSQASQDLKTALEWKEKV ADV L D L LGELSLE I ENFAQAAEDLQSALHWKEQV GDVY I LMGD I EREAEMFSRA IHHYLKALGYYKTL SDI HDL LGEI SLETENFKQASEDFESLLT I REEL SECYDL LGEVSLECENFSQASHDFEECLKLRREL ADCY D L LGEVS LENEN FQQASQDFEQCLK L RKEL AQL Y D L LGD I DQEL ED FTQAVRDYEEALK F YDKG AQL Y D L LGD I DQELED FTQAVRDYEGSLKF YDKS SAI Y D L LGDVDQEVEDFATAVEDYKQA IDY I KET AET Y D V LGEVSLEAEN FGQAAEDLRSCLALRERS AET F D L LGEV S LES EN FPQAAQDLQKSLD I RLQL SETY DL LGEVSLEAEN FPQSA I DLQNCLDL RLKL AEVYD I LGEI SLES EN FNQAVVDLGR SVEL KDKH SETYD I LGEVSLEMENFPQSAQDLTKSLDLRLQL SETYD I LGEVSLEAEN FNQAADDLRKCLELRLEL SD I Y D LQAE I SLEGERFSEAVSDLRAALKLKREL AD I Y D LQAE I SLEGE S FVNAVSDLRAALE L KEAL ADT Y D LQAE I SLEGER FLDAVTDLRTALDLRLAL ADCHGF LVEI SLENER FHDAVADARKSLALQEEL ADCHGF LVE I SLENER FHDAVADARKSLALQEEL ADTHDC LAE I SLENER YPNA I EDGRTSLNY KLEL ADTHDC LAE I SLENERYPNA I EDGRTSLNYKLEL ADTRD L LGEI SLENERFPAAVSDFRESLALKESL ADTR DL LGE I SLENERFPAAVADFKESLAL KQSL ADVY D L LGEVSLES ENFFQATKDFDS SLT L KEEL ADT Y D L LGEVS LES E S FPQATKDLRS SLE L KLKL ADVHD I LGEVSLES E S FKQACVDLEESLK I KQEL GEVYMA L GDV S LES GNFEQA I TDFLTALR I KEET ADVHLC LADVSLE I EK FDDSLGDYEKA I E I KEKY ADVH L C LGDVSLETEK FNEALSDYEKA I E I KQSV GEV FMK LGD I SLEQEN FDQAVVDYREAVKVKSER SDCYLA LGNVSCETENFPQAVQDFTAAVD I QNT I SECY LA LGDVSCET EN FDQAVKDYEAAVKLKASL SDCYLA LGNVSCETENFSQAVQDFTAAVD I QNT I AEVHR L L GDVATES EQFDNAVEEYT S SLS L LSRL ADTY I A LGDVSLETEK FDQA I QDYEAGLKHKVDL ADTY I A L GDVSLETEK FDQA I TDYEAGLKL KVQL ADT F I A LGDVSLETEK FDQA I TDYQS GLDL KLKL AEVMND LGDVGLEAEN FSQASADYRS SLE I LTPL AEVMN L L GDVGLES EN FTQASADYRS SLN I LLPL AEAQRMCGEVERES EK FDLA IKEYESALA I LTSV
P. murina
S. japonicus
S. cryophilus
S. pombe
S. octosporus
S. cerevisiae
W. ciferrii
K. lactis
K. marxianus
Z. bailii
Z. rouxii
T. phaffii
A. gossypii
L. elongisporus
D. hansenii
Y. lipolytica
C. parapsilosis
C. albicans
C. immitis
P. marneffei
A. ruber
B. victoriae
B. oryzae
M. robertsii
M. anisopliae
S. borealis
B. fuckeliana
P. omphalodes
T. melanosporum
D. haptotyla
B. dendrobatidis
R. delemar
M. circinelloides
R. irregularis
C. neoformans
T. asahii
C. gattii
R. toruloides
A. bisporus
L. bicolor
C. cinerea
U. hordei
U. maydis
M. violaceum

SEAHYKLALALE FLQ---REKA IEH I HWA I KS LEKR SEAHYKLALALE FTA---KKEALKHVEAAAD I IQHV SEAHYKLALALE F AD---KDRAREHVEMAAE I LRGI SEAHYKLALALE F TN---KSRACEHVEKAAE I LKNV TEAHYKLALALE F AN---KDRAREHVETAAN I LRD I I QAE F LVCDALRWVD---QVKDKLKR F KHAKALLEK SEAHYKL S LALE FNF---K I KA INHLTKA I ES I KLK I ESYYK I S LALE F DP---FKKCTSNLQKC I ELLKQR I ESHYK I S LAYE FDP---FEKCKANLVKCI ELLKKR I KTY L KLADALRWSN---KEKRLEHLQNLQELIRTR VDVYLKLTDALRWSD---KEQRQRHLQELEKLIRSR LTTS LKLI EALRWLT---KDKHKEI LN S TQ I LLKKR VEAHYKLALALEYVP---AAECCAQLQRCVDMLGAR SESHY KLALALE F CV---RKQAAQH I QMA I K S LEER SESHYKLS LALE FCV---RSKACEQMR LA I ESVRDR SEAHYKYS LALE F CP---KQKAVDQMI LA I D S VKKR SESHYKLALALE FCV---RKKAAEH I Q S A I K S TEAR SESHYKLALALE FQS---RKNAAEQMKLA I ESVERR
AECHY KL S LALE F S S---RAEAAKHMEAA I QCCKLR
SECHYKLS LALE FAS---REQS AKHMQ S A I E S CKLR
AECHY KL S LALE F GA---RKEAAVQMEKA I E S CQAR
TEAHY S LS LALE FAS---RKEAAEQTDLA I QS LEAR
TEAHYSLS LALE FAS---RKEAAEQTDLA I QS LEAR
AEAHYKLS LALE FAS---RDEA IKEMS LA I K S FKLK
AEAHYKLS LALE FAS---RDEA IKEMS LA I K S FKLK
AEAHYKLS LALE FAS---RAEAVKELELA I KS TKLK
AEAHYKLS LALE FAS---RAEAVKELELA I KS TKLK
SEAHF KMS LALEYS S---RNAAAEH I DKA I D S CKAR
SEAHFKLS LALE FAA---REEAAVQMELA I AS CRAR
TEAHYKL S LALE FAS---REQAVKHMR S A I AS CKKR
AEAHYKLALALEYS ----I EDA IVQVTQTTTVLEKH AEAYYRHALALE FS S---YDDALPALQKA I S VLKKR AEAHYKYALALE F S T---ADQALPELQKAVNVLKKR TEAHWR LALALS A S T---I DQA I EHVERAME V LNKC ASAHYQLATALE FTP---RTSALTHVES ALS SLVRR ASAEYQLGTALE FTP---RPAALVHVQAALDGFKAR ASAHY QLATALE F TP---RTSALTHVES ALSSLVRR SELHMLTALALE FVP---TSRAVSHAEKAKSVLVSK
AEAHY KL SMVLD LTS---LSDA I SHAENALESVEAR AEAHY KL SMVLD LTS---LADA IVHV EKALESVETR AEAHYKLS MVLD LTS---LADA I GHVEKALESVEHR ADAHL RLGLALE F HP---RKGAKSHVQ S A S DVLGKR ADAHL RLGLALE F HP---RKGAKPHVQAAS DVLAAR
SELHMLI ALAYDMI P---VPQAVHHAEQSKAVLLTK

Supplementary Figure 1-F

C. neoformans	41 AEGDEVG - - ELEDD-	52
T. asahii	29 EEGEE- - - - - . - - - EPEDD-	38
C. gattii	37 EGDEME - - - - - . - - - ELEDD -	47
R. toruloides	23 GEGEDAP S G - - - DREDD-	36
A. bisporus	31 EEEED - - - - - - - - EPEDD-	40
L. bicolor	27 EVGEDG - . . - - - EPEDD-	37
C. cinerea	26 EEGDDDG - . - . - . - - - EPEDD-	37
U. hordei	23 E- - - - - - - - - - - DDEDD -	28
U. maydis	23 A - - - - - - - . - - - DDEDD -	28
M. violaceum	22 DGGDEAMMV - - - - - - DRDDE-	35

Supplementary Figure 1-G

is	------TQTSGEDSHLT ---- S
Penicillium marneffei	- SQPDEENGEGKP - - - T
Aspergillus ruber	S KTEESGEQDSHGQ - - S
Bipolaris victoriae	SKVREDQTGQ S TDAPPEAEQGKEDED
Bipolaris oryzae	SKVREDQTGQ S TDAPAETEQGKEDED
Metarhizium robertsii	------ TMSDDEGKNTKR - - - - E
Metarhizium anisopliae	- TMSDDEGKNTKR - - - - E
Sclerotinia borealis	- TQTES EDKKPNAGA - - - D
Botryotinia fuckeliana	- I TQTETDDKKPNAGAD
Pyronema omphalodes	GEGI S
Tuber melanosporum	-GEGVT
Dactylellina haptotyla	QGGGEGDADNEVS P

Pneumocystis murina	NDVNALV-KKKKKS I
Schizosaccharomyces japonicus	NDLGS LV-KRKRPKT
Schizosaccharomyces cryophilus	NDLGGLV-KRKRPKQ
Schizosaccharomyces pombe	NDLGGLV-KRKRTKQ
Saccharomyces cerevisiae	NDLSQLV-KKKPRRH
Wickerhamomyces ciferrii	NDLTS I V-KKRKSKP
Kluyveromyces lactis	NDLTSMV-KKRKSND
Kluyveromyces marxianus	NDLTSK I-KKRKAN
Zygosaccharomyces bailii	NDLSKV -KKKKNKL
Zygosaccharomyces rouxii	NDLSKMV-KKKKTKS
Tetrapisispora phaffii	NDLS SMVFKKKKGKK
Ashbya gossypii	NDLTSRV-RRRGGAP
Lodderomyces elongisporus	NNLNSLV-RKRKPSK
Debaryomyces hansenii	NDLSSVV-KKKPSKP
Yarrowia lipolytica	NDLSGLA-VRKKAPK
Candida parapsilosis	NDLSGLV-KKRKQSK
Candida albicans	NNLQTMV-KKKQNKE
Coccidioides immitis	NDLNAFV-RKRKRNP
Aspergillus ruber	TDLSAFV-KRKPTNG
Bipolaris victoriae	NDVSGMV-KKKAKPA
Bipolaris oryzae	NDVSGMV-KKKAKPA
Metarhizium robertsii	TDLTGLV-RKKKAKE
Metarhizium anisopliae	TDLTGLV-RKKKAKE
Mucor circinelloides	NDLSTLV-KRKPAND
Cryptococcus neoformans	NDLTGMV-KKKKPKA
Trichosporon asahii	NDLTSMV-KKKKKPS
Tremella fuciformis	NDLSGLV-KKKPAKK
Cryptococcus gattii	NDLTSMV-KKKKPKA
Agaricus bisporus	NDLTG IV-KKKKKVA
Coprinopsis cinerea	NDLTS I V-KKKKKNP
Ustilago hordei	NNLSSMV-KRKKKAE
Ustilago maydis	NNLSSMV-KRKKKPE

Supplementary Figure 3
A

A. 1

Hif1 mutants name	Deleted segment	Protein length (amino acids)
Hif1 (Full length)	385	
Hif1-d7	Hif1: 378-385	378
Hif1-d35	Hif1: 350-385	350
Hif1-d70	Hif1: 315-385	315
Hif1-d116	Hif1: 269-385	269
Hif1-d179	Hif1: 206-385	206
Δ TPR1	Hif1: 22-55	352
Δ TPR-2L	Hif1: 61- 84	362
Δ TPR-Ac	Hif1: 85-188	282
Δ TPR2	Hif1: 61-206	240
Δ TPR3	Hif1: 236-259	352
Δ TPR4	Hif1: 280-315	350

Supplementary Figure 4

Supplementary Figure 5

A

B

Supplementary Figure 6
C

