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1 Framework

Let X,, be a sequence of random variables following a Wright-Fisher bi-allelic allele frequency discrete process. This means
that the conditional law of X, ;1 given X, is % multiplied by a binomial with parameters N and f(X,,) where f is a function,
let’s say f € C°°([0,1],[0,1]) for simplicity. This is commonly written as

X1 X ~ %B(N,f(Xn)), NeN, f e c®(0,1],[0,1])

The aim of this development is to accurately approximate moments of this process without having to compute the whole
process transition matrix. One can derive the following identities :

E(Xn+1) = E(E(Xn+1|Xn))
E(f(Xy))
E(Var(X,+1|X,)) + Var(E(X,4+1]1X5))

Va’l”(Xn+1)

1 1
= LX) ~ B (X0) + Var(£(X,)
= SEU(X) — 5 (Var(X,) + B((X,)?) + Var(f(X,)

As f is non linear function, we can’t say that either E(f(X,)) = f(E(X,)) or Var(f(X,)) = f(E(X,))Var(X,) (which
is the case when f is linear). However we can make an approximation around some point using a Taylor expansion. In
the following, u,, designates a deterministic sequence expected to be our approximation of E(X,,). In the same way, let o2
designate another deterministic sequence expected to be our approximation of Var(X,). One can set the error terms for
moments : &, = F(X,,) — u, and 6, = Var(X,) — o2

One can get the relation :

E((Xn = pn)?) = E(Xp — B(Xp) + B(X5) = p1)?)
=K [(Xn - E(Xn))2 +2(Xpn — E(Xn))(E(Xy) — pn) + (B(X,) — Nn)2]
=Var(X,) +&2
=02 46, +¢2
2

~
R 0,,.

2 Lacerda and Seoighe (2014) approximation

Let’s do a 15% order taylor expansion of any function g around the mean of a random variable X :

9(X) = g(E(X)) + ¢'(E(X))(X - E(X))

So by using mean and variance properties, one gets :



With these approximations, one get immediately the following identities :

3 Terhorst et al. (2015) approximation

Let’s write X,, = x,, + X, where x,,41 = f(z,,) and do the 2nd order Taylor expansion about this quantity:

= E(f(zn +6X5))

/ [ (@n) >
N f(n) + I (@) E6X,) + T B(6X2)
By definition, one gets also :

E(Xpt1) = 21 + E(0Xn41)
= f(wn) + E(6Xnt1)

So one can obtain the §.X,, recursion:

B(0X, ) = /() B0X,) + L0 B((0x,)7)

At this point, the author said :

Inductively, assuming that we can compute E(6X,,) and E((6X,)?), this enable us to compute E(X,,) and
Var(X,) = Var(6X,). This approach was previously employed by Barton et al. (2005) to obtain order O(+)
approximations to these moments. Here, we have used the same idea but automated the symbolic algebra and
code generation needed to generate the recursions to higher orders of accuracy.

This suggest that the author did implement an higher order recursion. However, they have not given recursions for E((6X,,)?),
so assuming they did in the same way than for E(5X,,), one obtains :

Var(6X,41) = Var(X,41)

- %E( F(X)(1 = F(X0)) + Var(f(X,))

= B+ X)L~ Flan +6X,)) + Var(f (e, +6X,)

1

N [f(xn)(l — f(zn)) + f/(-rn)(l = 2f(2,))E(6X,) — f/(xn)2E(5X72L)] + f’(xn)QVaT(an)

Using the fact that Var(6X,) = E((6X,)?) — E(6X,)?, all relations needed are established

%

4 Taylor expansion

Remember the following recursions :

E(Xn+1) = E(f(Xn))

Var(o) = (1= 5 ) Var(F()) + 3 BUCE - BCG))

As fisn’t linear, E(f(X,,)) has no closed form (the same problem occurs for higher moments). So one needs approximation
for these quantities.

To do this, one can expand the f function around our mean approximation p, assumed to be close from E(X,). The
following formula could help in that way :



“+o0 (k) 1"
f(Xy) = Z ) (X — ,Un)k = f(pn) + f/(ﬂn)(Xn — Hn) + ! (éun) (X — Nn)z +..

Assuming that all the operations done are legal, one can optain the following relations :

Proposition 1.

(k)

+ook 1 ) (k—1)
Var(f(Xn):ZZf (l;!(;cf_ l)!(M )
k=21=1

(B ((Xn — p)®) = E (X5 — pn)") E (X5 — pn)*1)

(k)
Proof. By taking the expectancy of f(X,) = ;::5 ! k(!“”) (X, — pin)* One gets immediately the 1% point :

190 £(k) (k)
E(f(X.)) :E< S (x, ) Zf — )®)
k=0

In the same way, the other relations can be obtained :
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4.1 1% order approximation

In this part, the previous relations are used to pinpoint recursions between the moments approximations :
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4.2 2" order approximation

In this part, the previous relations are used to pinpoint recursions between the moments approximations :

I rk)
= Z fT('un)E ((Xn - ,un)k)
k=0 ’

" 10 (k)
= F(n) + f ) + L (QMn)E (X = 1n)?) + > ! k(!“”)E (X0 — pn)")
k=3
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5 Recursions

With the relations established before, one can set different recursions schemes to approximate moments of the true Wright-

Fisher process.

5.1 From Lacerda and Seoighe’s derivations

One obtained the following :
E(Xni1) = f(Xn) (1)
Var(Xni1) = %f(E(Xn))(l — fE(Xa))) + f(BE(X,))*Var(Xn) (2)
Recursions used by Lacerda and Seoighe are:
o = E(Xo)
ot = Var(Xo)
Pngr = f(pin)

Remark 1. Note that in their case, they took f having the form :
(Lt s)2(l-a)+(1-2)8

5.2 From Terhorst et al.’s (2015) derivations
These recursions are more tricky than previous ones because it’s a five crossed sequence recursion :
xo = po = E(Xop) €10 =0
0(2] = Va’l"(X()) €20 = 0

Tpt1 = f(xn)

s = f(2n) + F'(@n)ern + %
01 = o [ (1 F@a) + £ @) (= 2f )ern — F'(ea)en] + 7200

f"(xn)

€1,n+1 = f/(-rn)gl,n + D) €2.n

2 2
€2n+1 = O0pqq + 51,n+1

5.3 From 1% order approximation

In this part, let p,, 02 be defined from the following relations :

to = E(Xo)
os = Var(Xo)
Mn+1 = f(:un)
0721+1 _ f(/ln)(lj\; f(pn)) + (1 _ Jb) f/(ﬂn)QUi

5.4 From 2" order approximation

In this part, let p,,, 02 be defined from the following relations :
po = E(Xo)
o2 = Var(Xo)

MHnt1 = f(ﬂn) + %02

ot = (10 4+ T02) (1 gy = LU o2) o (1= L) o




