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1 Genotyping of variants upstream of ZmCCT10

1.1 KASP assays for SNPs

Two SNPs were genotyped using Kompetitive Allele-Specific PCR (KASPTM, V3.0 Master-
Mix; LGC Genomics LLC, Beverly, MA) according to the manufacturer’s protocol, except an
additional 12 cycles of amplification were used. These SNPs included: (i) SNP495, a T/C poly-
morphism at AGPv4 position 94, 434, 777; (ii) SNP1520, a C/T polymorphism at AGPv4 position
94, 434, 924. KASP products were assayed using an ABI 7500 fast real-time qPCR instrument.

1.2 PCR assay for the presence-absence variant

ZmCCT10 CACTA, a marker for the ZmCCT10 -associated presence-absence causal variant
for photoperiodism was genotyped by scoring PCR amplicons separated in 2.0% agarose gels
stained with SYBR Gold (Life Technologies, Carlsbad, CA). Genotypes were determined from
two separate reactions (insertion assay primer pair: 5‘-AAACGCTGACACTTCCGACT and 5‘-
AGCTTCGAATTTTGCTGCTG; deletion assay primer pair: 5‘-GCGTACCCGAATCAAATCAA
and 5‘-CGTATGTGCATCCATCAGGA) amplified using standard PCR reagents (M0273L, New
England BioLabs) with 0.2 µM primer, 0.1 µM dNTPs, 5 M betaine and 20 ng DNA. Thermal
cycling was performed for 1 cycle for 15 min at 94 °C, 10 cycles for (i) 20 s at 94 °C and (ii) 1
min at 65 °C with each additional cycle reducing by -0.8 °C down to 57 °C, 26 cycles for (i) 20 s
at 94 °C and (ii) 1 min at 57 °C, followed by 4 °C.

2 Quality Control

Custom scripts were used to perform quality control on the genotype data as follows. Based on
inspection of pairwise genotypic correlations we identified one sample pair, g0 (C0 165 2) and
g4 (C4 840 1), with an unusually high genotypic correlation (r = 0.85). The putative g4 sample
was most highly related to g0 samples rather than other g4 samples, while the g0 sample was
most related to the other g0 samples; therefore, genotype data from C4 840 1 was removed. Five
samples (C0 062314 075, C0 062314 079, C0 062314 085, C6 853 1, C6 853 4) with call rates
< 85% were also removed. With the remaining samples, marker filters were sequentially applied
as indicated in Table S1.

Physical map data from the B73 AGPv2 reference assembly was originally used for quality
control filtering and some analyses of the MaizeSNP50 SNPs (Tables S1 and S2). We later
received AGPv4 map information (Illumina Inc., San Diego, CA) and used this for subsequent
analyses (Table S2). Supplemental File S1 contains all map information and indicator variables
for the analysis-specific subset to which markers belonged.

3 Genetic Map Projection

To generate a genetic map including markers having only physical coordinates, centimorgan
(cM) positions were projected onto the maize nested association mapping (NAM) population
consensus linkage map [McMullen et al., 2009]. Using a core set of 1106 markers with physical
and genetic coordinates, for each sequential interval delimited by the ith pair of core markers, the
cM position for each jth marker nested within the interval (having only a physical coordinate)
was estimated as:

cM = yi + ([xj(i) − xi][yi+1 − yi/xi+1 − xi]); (1)
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where yi and yi+1 correspond to the cM positions for core markers delimiting the ith interval,
xi and xi+1 correspond to physical positions for the same markers, and xj(i) corresponds to the

physical position of the jth marker nested within the ith interval.

4 STRUCTURE analysis

For values of K = 1 − 8, ten replicate runs were performed with 20, 000 burn-in iterations
(exception for K = 1, which required 50, 000 iterations for alpha to converge) and 50, 000 MCMC
iterations. At K = 3 and K = 8, some replicate runs converged on a separate optimum that
was very different from the modal trend in Ln(K ) among replicated runs; for these values of K,
additional replicates were executed to obtained 10 that converged on the more frequently similar
Ln(K ) values. CLUMPP [Jakobsson and Rosenberg, 2007] was used to consolidate replicate runs
of STRUCTURE, and samples were assigned to the subpopulation for which their admixture
proportion was greatest (Table S3). DISTRUCT [Rosenberg, 2004] was used to plot the results
from CLUMPP.

5 SIM test

A whole genome simulator was used to model the expected variation in SNP frequencies across
generations under the breeding scheme for Hallauer’s Tusón without selection (i.e., neutral allele
frequency change). The simulation was implemented using SAEGUS (https://github.com/
maizeatlas/saegus), an extension of simuPOP [Peng and Kimmel, 2005]. Fixed recombination
rates between markers were assumed as the difference in cM values for the NAM-projected genetic
map of the MaizeSNP50 markers.

The simulation was initiated using the observed genotype matrix of g0, which captures the
starting LD and structure in the population. However, because the g0 sample was less than the
original census size of the population (n = 10, 000), a sample expansion step (next paragraph)
was added to the simulation to recreate the g0 base population. Using g0 samples to reproduce
the g0 base population will be somewhat imprecise (sampling effect) and one additional meiosis
was simulated that did occur originally; however, the population structure Q matrix estimated
for g0 (Table S3) was used for this step to provide a close approximation of the actual scenario.

According to the analysis of structure, g0 was formed from six ancestral subpopulations. Using
the genotype matrix of g0 as input, an in silico population of 10, 000 individuals was formed by
repeating the following steps: (i) the real individuals listed in Table S3 were assigned to one
subpopulation, according to their maximum subpopulation assignment; (ii) a real individual
was then drawn at random and artificially designated a female plant; (iii) the subpopulation
admixture profile Q of the selected female was used as a probability mass function to determine
the subpopulation from which a mate (male) was randomly drawn; and (iv) ignoring Q for
the selected mate, the chosen female and male were mated in silico to produce a single offspring
using the corresponding genotype data on those particular individuals. Note that this process will
include within subpopulation matings according to the Q-conditioned probability mass function.
This procedure was repeated until 10,000 offspring were produced.

From these 10, 000 simulated genotypes, 400 individuals were chosen at random (without
replacement) and designated as females. Simulated crosses to these females were made with a
pool of 800 males that included the same 400 females and an additional set of 400 randomly
chosen individuals. Therefore, mating occurred among some individuals (as males) that were
not advanced as females and also included some selfing, as would be expected. Random mating
among this group of females and males proceeded until 10, 000 individuals were formed. This
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process was repeated for 10 generations. From among the 10, 000 simulated individuals per
generation {0, 2, ..., 10}, samples were taken with sizes corresponding to the real data set. For
each locus and each replication of simulation, generation-specific allele and genotype frequencies
were then recorded.

A function was written to determine the marker-specific two-tailed probability of the sum
of sequential allele frequency differences across g0 to g10 for the observed data relative to the
distribution from 10, 000 replications of simulation.

The SIM test was also used to examine whether SIM+ markers were the same across genera-
tions. In this case, the test was applied to sequential pairs of generations. This identified a total
of 2, 416 SIM+ markers (1% FDR), of which 84% were specific to one pair of generations (Figure
S3).

6 Estimation of genetic parameters

6.1 QST

Genetic variances for Q̂ST = σ̂2
GB/(σ̂

2
GB + 2σ̂2

GB) [Spitze, 1993, Leinonen et al., 2013] were es-

timated using phenotype data from [Teixeira et al., 2015], where σ̂2
GB and σ̂2

GB are the among-
generation and average within-generation additive genetic variance. The data was subset to
include observations from Iowa and Delaware and check entries were removed. Iowa was the orig-
inal site of selection, and these data were highly correlated with Delaware [Teixeira et al., 2015],
providing additional observations for more precise estimation. When estimating σ̂2

GB, six ad-
ditional columns were added to the input file defining a grouping structure for generation-sets,
where all families in a given pair of generations g0,gi={2,4,6,8,10} were assigned the factor level 1
and all other families were assigned the factor level 0. The following mixed linear models were
fit to the data:

y = Xmβ + Xpψ + ZEe + ZI(R∗E)i + ZG(P )g + ZF (G(P ))f + ZF (G(P ))∗Ef ∗ e + ε; (2)

y = Xmβ + XGγ + ZEe + ZI(R∗E)i + ZF (G)f + ZF (G)∗Ef ∗ e + ε; (3)

Equation 2 was used to estimate σ̂2
GB and equation 3 was used to estimate σ̂2

GW. The design
matrices XM , XP , ZE , ZI(R∗E), ZG(P ), ZF (G(P )), ZG(P )∗E (equation 2) and XM , XG, ZE ,
ZI(R∗E), ZF (G), ZF (G)∗E (equation 3) relate the vector of observations, y, to the corresponding
vector of effects. The fixed effects are: β is the overall mean; ψ is the vector of “generation-set”
effects (equation 2); γ is the vector of generation effects (equation 3). The random effects are: e
is the vector of environment effects; i is the vector of incomplete block nested in replication-by-
environment interaction effects (fit for Delaware only, see below); g is the vector of generation
nested in generation-set effects (equation 2); f is the vector of family nested in generation within
generation-set effects (3) or the vector of family nested in generation effects (equation 3); f ∗ e is
the vector of family nested in generation-by-environment interaction within generation-set effects
(equation 2) or family nested in generation-by-environment effects (equation 3); ε is the vector
of residual effects. Replications for Iowa and Delaware and incomplete blocks for Iowa were not
included in the model since these were previously found to be non-significant according to the
likelihood ratio test [Teixeira et al., 2015]

For equation 2, random effects were assumed to be distributed MVN ∼ (0, σ̂2
{e,ie,gs,fs,fs∗e,εr}),

where σ̂2
e is the variance among environments, σ̂2

ie
is the Delaware-specific variance among incom-

plete blocks, σ̂2
gs

is the genetic variance among generations in the sth generation-set—σ̂2
GB forQST
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(for each set, the variance estimated at factor level 1 is the set-specific variance) σ̂2
fs

= Gσ̂2
gs

is the sth generation-set-specific additive genetic variance among families nested in generations
(this is the “pooled” additive genetic variance among all families for each sth set; this is not σ̂2

GW

for each generation [see below]), σ̂2
fs∗e is the genotype-by-environment variance among families

nested in generations within the sth generation-set, and σ̂2
εr

is the variance in environment-specific
residuals.

For equation 3, random effects were assumed to be distributed MVN ∼ (0, σ̂2
{e,ie,fg,fg∗e,εr}),

where σ̂2
e is the variance among environments, σ̂2

ie
is the Delaware-specific variance among in-

complete blocks, σ̂2
fg

= Gσ̂2
gs

is the gth generation-specific additive genetic variance among

families nested within generations—σ̂2
GW forQST, σ̂2

fg∗e is the generation-specific genotype-by-

environment variance among families nested in generations, and σ̂2
εr

is the variance in environment-
specific residuals.

The G matrix was estimated using markers in set C (Table S2). For equations 2 and 3, because
no covariance between individuals in different generations is assumed for F̂ST, covariance in G
between individuals from different generations was set to 0.

6.2 Estimating variance per chromosome

Equation 2 in the main text was extended to partition the additive, dominance and residual
genetic variances for (i) each chromosome and (ii) SIM+ markers. In each case, the genomic
relationship matrices used to partition the variance were constructed from among set C markers
(Table S2). For the former estimation, 10 chromosome-specific G and D matrices were computed
from markers on each chromosome, in addition to 10 complementary G and D matrices computed
from all markers on the remaining chromosomes. Ten separate models were fit to the data that
each included the chromosome-specific and remaining chromosome a and d terms. For the latter
estimation, separate G and D matrices were computed using set C markers classified as either
SIM− or SIM+. These were fit in a single model that included separate a and d terms for
SIM− and SIM+ markers. For all models, each of the random genetic effects was assumed to be
distributed mutually independent.

Estimates of genetic variance components per chromosome are reported in Table S6. The sum
of genetic variances in each row of the table is approximately equal to one another and to the
total, genome-wide estimate for genetic variance of 32.7 (based on the model from the main text).
While comparisons may be made in terms of relative amounts of variance per chromosome, we
note that the chromosome-specific additive and dominance variances (column sums) are upward
biased. That is, the column sum for chromosome-specific additive variance is 30.6 while the
genome-wide estimate is 27.6. Similarly, the column sum for chromosome-specific dominance
variance is 10.4 while the genome-wide estimate is 5.1. This indicates the residual chromosome
variances (i.e., “sans chromosome” cell values in Table S6) are downward biased. We speculate
this is due to covariance that is not accounted for between the specific chromosome being modeled
and the residual set of chromosomes; i.e., the chromosome-specific genomic relationship matrices
capture the covariance within that chromosome, while the residual genomic relationship matrices
capture the covariance only within and between the remaining chromosomes.
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