
GENOTYPIC FREQUENCIES AT EQUILIBRIUM

FOR POLYSOMIC INHERITANCE UNDER

DOUBLE-REDUCTION

MATERIAL S1: THE APPENDICES

A Derivation of Pr(𝐵𝐵𝐵𝐵 |𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵)

In this example, we show how to derive the transitional probability from a zygote genotype 𝐺 =

𝐴𝐵𝐵𝐵𝐵𝐵𝐵𝐵 to a gamete genotype 𝑔 = 𝐵𝐵𝐵𝐵. According to Equation (1), 𝑚𝑘 and 𝑛𝑘 are respectively

the numbers of copies of 𝐴𝑘 in 𝑔 and 𝐺, ℎ is the number of alleles at this locus, and 𝑣 is the ploidy level.

Letting 𝑣 = 8, ℎ = 2, 𝑚1 = 0, 𝑚2 = 4, 𝑛1 = 1 and 𝑛2 = 7, and expanding the sum formula in Equation

(1), it follows the following expression:
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Note that 𝛿𝑗𝑘 = 0 whenever 𝑗𝑘 < max(0,𝑚𝑘 − 𝑛𝑘) or 𝑗𝑘 > min(𝑛𝑘,𝑚𝑘/2). The coefficients of the above

terms with a gray background are equal to zero.

B Derivation of 𝛼𝑖 under octosomic inheritance

In this example, we show how to derive the values of alpha for octosomic inheritance in both CES

and PES.

For the case of CES, we first calculate the values of 𝜇𝑗 for each possible 𝑗. Because there are 𝑣/2

chromosomes, the maximum value of 𝑗 is ⌊𝑣/4⌋. Note that in this case, we have 𝑣 = 8, then ⌊𝑣/4⌋ = 2
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and 𝑗 = 0, 1, 2. Now, by Equation (4), we obtain
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Second, we calculate the value of 𝛼𝑖 under CES where 0 6 𝑖 6 ⌊𝑣/4⌋, i.e. 0 6 𝑖 6 2. By Equation

(5), it follows that:
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For the case of PES, we still have 𝑣 = 8, then ⌊𝑣/4⌋ = 2 and the values of 𝜇0, 𝜇1 and 𝜇2 in Equation

(6) are just those values in the case of CES. Now, according to Equation (6), we have
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Furthermore, because of Equation (5), we derive the value of 𝛼𝑘 (𝑘 = 0, 1, 2) under PES as follows:
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C Derivation of GFG and GFZ with nonlinear method

Here, we use the tetrasomic inheritance at a triallelic locus under equilibrium to derive the GFG by

using a non-linear method as an example. Under these conditions, we have 𝑣 = 4 and ℎ = 3. Because(︀
𝑣/2+ℎ−1

𝑣/2

)︀
=

(︀
4
2

)︀
= 6 and

(︀
𝑣+ℎ−1

𝑣

)︀
=

(︀
6
4

)︀
= 15, there are 6 gamete genotypes and 15 zygote genotypes, so

Equations (8) and (9) determine 6 and 15 equations, respectively.

(i) Simulating meiosis. We denote 𝐴𝐴 and 𝐴𝐵 for two gamete genotypes, and 𝑃𝐴𝐴 and 𝑃𝐴𝐵 for their

frequencies, and so on. Similarly, denote 𝐴𝐴𝐵𝐵 and 𝐴𝐵𝐵𝐶 for two zygote genotypes, and 𝑃𝐴𝐴𝐵𝐵 and

𝑃𝐴𝐵𝐵𝐶 for their frequencies, and so on. Now, by Equation (8), the GFG can be established as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃𝐴𝐴 = 𝑃𝐴𝐴𝐴𝐴 + 2+𝛼1
4 (𝑃𝐴𝐴𝐴𝐵 + 𝑃𝐴𝐴𝐴𝐶) +

1+2𝛼1
6 (𝑃𝐴𝐴𝐵𝐵 + 𝑃𝐴𝐴𝐵𝐶 + 𝑃𝐴𝐴𝐶𝐶)

+𝛼1
4 (𝑃𝐴𝐵𝐵𝐵 + 𝑃𝐴𝐵𝐵𝐶 + 𝑃𝐴𝐵𝐶𝐶 + 𝑃𝐴𝐶𝐶𝐶),

𝑃𝐵𝐵 = 𝑃𝐵𝐵𝐵𝐵 + 2+𝛼1
4 (𝑃𝐴𝐵𝐵𝐵 + 𝑃𝐵𝐵𝐵𝐶) +

1+2𝛼1
6 (𝑃𝐴𝐴𝐵𝐵 + 𝑃𝐴𝐵𝐵𝐶 + 𝑃𝐵𝐵𝐶𝐶)

+𝛼1
4 (𝑃𝐴𝐴𝐴𝐵 + 𝑃𝐴𝐴𝐵𝐶 + 𝑃𝐴𝐵𝐶𝐶 + 𝑃𝐵𝐶𝐶𝐶),

𝑃𝐶𝐶 = 𝑃𝐶𝐶𝐶𝐶 + 2+𝛼1
4 (𝑃𝐴𝐶𝐶𝐶 + 𝑃𝐵𝐶𝐶𝐶) +

1+2𝛼1
6 (𝑃𝐴𝐴𝐶𝐶 + 𝑃𝐴𝐵𝐶𝐶 + 𝑃𝐵𝐵𝐶𝐶)

+𝛼1
4 (𝑃𝐴𝐴𝐴𝐶 + 𝑃𝐴𝐴𝐵𝐶 + 𝑃𝐴𝐵𝐵𝐶 + 𝑃𝐵𝐵𝐵𝐶),

𝑃𝐴𝐵 = 1−𝛼1
2 (𝑃𝐴𝐴𝐴𝐵 + 𝑃𝐴𝐵𝐵𝐵) +

2(1−𝛼1)
3 𝑃𝐴𝐴𝐵𝐵 + 1−𝛼1

3 (𝑃𝐴𝐴𝐵𝐶 + 𝑃𝐴𝐵𝐵𝐶)

+1−𝛼1
6 𝑃𝐴𝐵𝐶𝐶 ,

𝑃𝐴𝐶 = 1−𝛼1
2 (𝑃𝐴𝐴𝐴𝐶 + 𝑃𝐴𝐶𝐶𝐶) +

2(1−𝛼1)
3 𝑃𝐴𝐴𝐶𝐶 + 1−𝛼1

3 (𝑃𝐴𝐴𝐵𝐶 + 𝑃𝐴𝐵𝐶𝐶)

+1−𝛼1
6 𝑃𝐴𝐵𝐵𝐶 ,

𝑃𝐵𝐶 = 1−𝛼1
2 (𝑃𝐵𝐵𝐵𝐶 + 𝑃𝐵𝐶𝐶𝐶) +

2(1−𝛼1)
3 𝑃𝐵𝐵𝐶𝐶 + 1−𝛼1

3 (𝑃𝐴𝐵𝐵𝐶 + 𝑃𝐴𝐵𝐶𝐶)

+1−𝛼1
6 𝑃𝐴𝐴𝐵𝐶 .

(A1)

(ii) Simulating fertilization. By Equation (9), the GFZ can be established as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃𝐴𝐴𝐴𝐴 = 𝑃 2
𝐴𝐴,

𝑃𝐵𝐵𝐵𝐵 = 𝑃 2
𝐵𝐵 ,

𝑃𝐶𝐶𝐶𝐶 = 𝑃 2
𝐶𝐶 ,

𝑃𝐴𝐴𝐴𝐵 = 2𝑃𝐴𝐴𝑃𝐴𝐵 ,

𝑃𝐴𝐴𝐴𝐶 = 2𝑃𝐴𝐴𝑃𝐴𝐶 ,

𝑃𝐴𝐵𝐵𝐵 = 2𝑃𝐴𝐵𝑃𝐵𝐵 ,

𝑃𝐵𝐵𝐵𝐶 = 2𝑃𝐵𝐵𝑃𝐵𝐶 ,

𝑃𝐴𝐶𝐶𝐶 = 2𝑃𝐴𝐶𝑃𝐶𝐶 ,

𝑃𝐵𝐶𝐶𝐶 = 2𝑃𝐵𝐶𝑃𝐶𝐶 ,

𝑃𝐴𝐴𝐵𝐵 = 2𝑃𝐴𝐴𝑃𝐵𝐵 + 𝑃 2
𝐴𝐵 ,

𝑃𝐴𝐴𝐶𝐶 = 2𝑃𝐴𝐴𝑃𝐶𝐶 + 𝑃 2
𝐴𝐶 ,

𝑃𝐵𝐵𝐶𝐶 = 2𝑃𝐵𝐵𝑃𝐶𝐶 + 𝑃 2
𝐵𝐶 ,

𝑃𝐴𝐴𝐵𝐶 = 2𝑃𝐴𝐴𝑃𝐵𝐶 + 2𝑃𝐴𝐵𝑃𝐴𝐶 ,

𝑃𝐴𝐵𝐵𝐶 = 2𝑃𝐴𝐵𝑃𝐵𝐶 + 2𝑃𝐴𝐶𝑃𝐵𝐵 ,

𝑃𝐴𝐵𝐶𝐶 = 2𝑃𝐴𝐵𝑃𝐶𝐶 + 2𝑃𝐴𝐶𝑃𝐵𝐶 .

(A2)

Now, substituting Equation (A2) into Equation (A1), the GFZ are eliminated, and a system of

non-linear equations with 6 equations and 6 unknowns is obtained (whose expressions are more complex

and omitted). On the other hand, the process that transforms the allele frequencies into GFG can be

described by the linear substitution {︃
𝑝𝐴 = 𝑃𝐴𝐴 + 1

2 (𝑃𝐴𝐵 + 𝑃𝐴𝐶),

𝑝𝐵 = 𝑃𝐵𝐵 + 1
2 (𝑃𝐴𝐵 + 𝑃𝐵𝐶),

where 𝑝𝐴, 𝑝𝐵 and 𝑝𝐶 are the allele frequencies with 𝑝𝐴+𝑝𝐵 +𝑝𝐶 = 1. Combining the linear substitution

with the system of non-linear equations mentioned above, we still obtain a system of non-linear equations

with 8 equations, 6 unknowns (i.e. 𝑃𝐴𝐴, 𝑃𝐴𝐵 , 𝑃𝐴𝐶 , 𝑃𝐵𝐵 , 𝑃𝐵𝐶 and 𝑃𝐶𝐶) and 2 parametric variables (i.e.

𝑝𝐴 and 𝑝𝐵). The solution that is with 𝑝𝐴 and 𝑝𝐵 as the parametric variables is unique and is shown as

follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃𝐴𝐴 =
3𝛼1𝑝𝐴+2(1−𝛼1)𝑝

2
𝐴

2+𝛼1
,

𝑃𝐴𝐵 = 4(1−𝛼1)𝑝𝐴𝑝𝐵

2+𝛼1
,

𝑃𝐴𝐶 = 4(1−𝛼1)(1−𝑝𝐴−𝑝𝐵)𝑝𝐴

2+𝛼1
,

𝑃𝐵𝐵 =
3𝛼1𝑝𝐵+2(1−𝛼1)𝑝

2
𝐵

2+𝛼1
,

𝑃𝐵𝐶 = 4(1−𝛼1)(1−𝑝𝐴−𝑝𝐵)𝑝𝐵

2+𝛼1
,

𝑃𝐶𝐶 = (1−𝑝𝐴−𝑝𝐵)(2+𝛼1−2𝑝𝐴+2𝛼1𝑝𝐴−2𝑝𝐵+2𝛼1𝑝𝐵)
2+𝛼1

.

Therefore, the generalized form for GFG at equilibrium can be directly written as follows:

Pr(𝑔 | 𝑣 = 4) =

{︃
3𝛼1𝑝𝐴+2(1−𝛼1)𝑝

2
𝐴

2+𝛼1
if 𝑔 = 𝐴𝐴,

4(1−𝛼1)𝑝𝐴𝑝𝐵

2+𝛼1
if 𝑔 = 𝐴𝐵.

(A3)

Using Equation (9), we can derive the generalized form for GFZ at equilibrium as follows:
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Pr(𝐺 | 𝑣 = 4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[2𝑝𝐴+𝛼1(3−2𝑝𝐴)]2𝑝2
𝐴

(2+𝛼1)2
if 𝐺 = 𝐴𝐴𝐴𝐴,

8(𝛼1−1)[2(𝛼1−1)𝑝𝐴−3𝛼1]𝑝
2
𝐴𝑝𝐵

(2+𝛼1)2
if 𝐺 = 𝐴𝐴𝐴𝐵,

6𝑝𝐴𝑝𝐵𝜆1

(2+𝛼1)2
if 𝐺 = 𝐴𝐴𝐵𝐵,

24(𝛼1−1)[2(𝛼1−1)𝑝𝐴−𝛼1]𝑝𝐴𝑝𝐵𝑝𝐶

(2+𝛼1)2
if 𝐺 = 𝐴𝐴𝐵𝐶,

96(𝛼1−1)2𝑝𝐴𝑝𝐵𝑝𝐶𝑝𝐷

(2+𝛼1)2
if 𝐺 = 𝐴𝐵𝐶𝐷.

(A4)

Where 𝜆1 = 4𝑝𝐴𝑝𝐵 + 2𝛼1(𝑝𝐴 + 𝑝𝐵 − 4𝑝𝐴𝑝𝐵) + 𝛼2
1(3 + 4𝑝𝐴𝑝𝐵 − 2𝑝𝐴 − 2𝑝𝐵).

D GFG and GFZ in hexasomic inheritance

The generalized form of GFG for hexasomic inheritance at equilibrium derived from the linear method

is given by

Pr(𝑔 | 𝑣 = 6) =

⎧⎪⎪⎨⎪⎪⎩
𝑝𝐴[20𝛼2

1−45(𝛼1−3)𝛼1𝑝𝐴+27(𝛼1−3)(𝛼1−1)𝑝2
𝐴]

(𝛼1+9)(2𝛼1+9) if 𝑔 = 𝐴𝐴𝐴,
9(𝛼1−3)𝑝𝐴[9(𝛼1−1)𝑝𝐴−5𝛼1]𝑝𝐵

(𝛼1+9)(2𝛼1+9) if 𝑔 = 𝐴𝐴𝐵,
162(𝛼1−3)(𝛼1−1)𝑝𝐴𝑝𝐵𝑝𝐶

(𝛼1+9)(2𝛼1+9) if 𝑔 = 𝐴𝐵𝐶.

Where 𝐴𝐴𝐴, 𝐴𝐴𝐵 and 𝐴𝐵𝐶 are the genotypic patterns of 𝑔. With Equation (9), the generalized form

of GFZ for hexasomic inheritance at equilibrium is given by

Pr(𝐺 | 𝑣 = 6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆2
9𝑝

2
𝐴𝜆

−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐴𝐴𝐴𝐴,

18𝜆9𝜆2𝜆7𝑝
2
𝐴𝑝𝐵𝜆

−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐴𝐴𝐴𝐵,

9𝜆2[2𝜆9𝜆8 + 9𝜆2(𝛼1𝜆6 + 9𝑝𝐴)
2𝑝𝐵 ]𝑝

2
𝐴𝑝𝐵𝜆

−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐴𝐴𝐵𝐵,

810𝜆2(23𝛼
2
1 − 13𝛼3

1 + 36𝛼1𝜆2𝜆3𝑝𝐴 + 27𝜆2𝜆
2
3𝑝

2
𝐴)𝑝

2
𝐴𝑝𝐵𝑝𝐶𝜆

−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐴𝐴𝐵𝐶,

2(𝜆9𝜆10 + 81𝜆2
2𝜆7𝜆8𝑝𝐴𝑝𝐵)𝑝𝐴𝑝𝐵𝜆

−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐴𝐵𝐵𝐵,

180𝜆2[10𝛼
3
1 + 243𝜆2𝜆

2
3𝑝

2
𝐴𝑝𝐵 + 54𝛼1𝜆2𝜆3𝑝𝐴(𝑝𝐴 + 3𝑝𝐵) if 𝐺 = 𝐴𝐴𝐴𝐵𝐵𝐶,

+9𝛼2
1(5𝜆2𝑝𝐴 + 2𝜆3𝑝𝐵)]𝑝𝐴𝑝𝐵𝑝𝐶𝜆

−2
4 𝜆−2

5

3240𝜆2𝜆3(2𝛼
2
1 + 18𝛼1𝜆2𝑝𝐴 + 27𝜆2𝜆3𝑝

2
𝐴)𝑝𝐴𝑝𝐵𝑝𝐶𝑝𝐷𝜆−2

4 𝜆−2
5 if 𝐺 = 𝐴𝐴𝐴𝐵𝐶𝐷,

810𝜆2
2(81𝑝𝐴𝑝𝐵𝑝𝐶 + 18𝛼1𝜆11 + 𝛼2

1𝜆12)𝑝𝐴𝑝𝐵𝑝𝐶𝜆
−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐵𝐵𝐶𝐶,

1620𝜆2
2[5𝛼

2
1 + 81𝜆2

3𝑝𝐴𝑝𝐵 + 18𝛼1𝜆3(𝑝𝐴 + 𝑝𝐵)]𝑝𝐴𝑝𝐵𝑝𝐶𝑝𝐷𝜆−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐵𝐵𝐶𝐷,

29160𝜆2
2𝜆3(2𝛼1 + 9𝜆3𝑝𝐴)𝑝𝐴𝑝𝐵𝑝𝐶𝑝𝐷𝑝𝐸𝜆

−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐴𝐵𝐶𝐷𝐸,

524880𝜆2
2𝜆

2
3𝑝𝐴𝑝𝐵𝑝𝐶𝑝𝐷𝑝𝐸𝑝𝐹𝜆

−2
4 𝜆−2

5 if 𝐺 = 𝐴𝐵𝐶𝐷𝐸𝐹.

Where 𝜆2 = 3 − 𝛼1, 𝜆3 = 1 − 𝛼1, 𝜆4 = 9 + 𝛼1, 𝜆5 = 9 + 2𝛼1, 𝜆6 = 5 − 9𝑝𝐴, 𝜆7 = 5𝛼1 + 9𝜆3𝑝𝐴,

𝜆8 = 5𝛼1 + 9𝜆3𝑝𝐵 , 𝜆9 = 20𝛼2
1 + 45𝛼1𝜆2𝑝𝐴 + 27𝜆2𝜆3𝑝

2
𝐴, 𝜆10 = 20𝛼2

1 + 45𝛼1𝜆2𝑝𝐵 + 27𝜆2𝜆3𝑝
2
𝐵 , 𝜆11 =

𝑝𝐴𝑝𝐵 + 𝑝𝐴𝑝𝐶 + 𝑝𝐵𝑝𝐶 − 9𝑝𝐴𝑝𝐵𝑝𝐶 , 𝜆12 = 5𝑝𝐴 + 5𝑝𝐵 + 5𝑝𝐶 − 18𝑝𝐴𝑝𝐵 − 18𝑝𝐴𝑝𝐶 − 18𝑝𝐵𝑝𝐶 + 81𝑝𝐴𝑝𝐵𝑝𝐶 .

E Derivation of co-ancestry coefficients in different relationships

The expression of co-ancestry coefficient 𝜃 in mating individuals can be obtained by taken the weighted

average of co-ancestry coefficient between different relationships, where the weight is the frequencies of

those relationships in mating individuals. We first derive the co-ancestry coefficients in the following four

relationships.

5



In selfing, the individual self-fertilizes. For a pair of alleles sampled from an individual with replace-

ment, the probability is 1/𝑣 if the same allele is sampled twice and these are indeed IBD; otherwise the

probability is 𝐹 . Hence 𝜃𝐼𝐷 = 1
𝑣 + 𝑣−1

𝑣 𝐹 .

In backcrossing, the offspring is fertilized by, or fertilizes, its parent (says 𝑓). Let 𝑚 be the other

parent. Denote 𝑔𝑓 and 𝑔𝑚 for the two gametes which are respectively produced by 𝑓 and 𝑚 to form an

offspring. The allele pairs between the offspring and 𝑓 can be classified into two categories: (i) between

𝑔𝑓 and 𝑓 . In this case, for each allele pair, the probability that the two alleles are IBD is equal to 𝜃𝐼𝐷; (ii)

between 𝑔𝑚 and 𝑓 . In this case, for each allele pair, the probability that the two alleles are IBD alleles

is equal to 𝜃, i.e. the co-ancestry coefficient between mating individuals. Hence 𝜃𝑃𝑂 = (𝜃𝐼𝐷 + 𝜃)/2.

In matings between full-siblings (says 𝑎 and 𝑏), it is assumed that the parents are 𝑓 and 𝑚, and let

𝑔𝑎𝑓 and gam be the gametes forming 𝑎, where 𝑔𝑎𝑓 is produced by 𝑓 and 𝑔𝑎𝑚 is produced by 𝑚. Similarly,

𝑔𝑏𝑓 and 𝑔𝑏𝑚 denote the gametes forming 𝑏. For each pair of alleles, the probability that the two alleles

are IBD between 𝑔𝑎𝑓 -𝑔𝑏𝑓 is 𝜃𝐼𝐷, the same as that between 𝑔𝑎𝑚-𝑔𝑏𝑚; and the probability that they are

IBD between 𝑔𝑎𝑓 -𝑔𝑏𝑚 is 𝜃, the same as that between 𝑔𝑎𝑚-𝑔𝑏𝑓 . Hence 𝜃𝐹𝑆 = (𝜃𝐼𝐷 + 𝜃)/2.

In matings between nonrelatives, 𝜃𝑈𝑁 = 0.

Second, we derive the 𝐹 in population with a selfing ratio 𝑠 as an example. Assuming a proportion

𝑠 of individuals is produced by selfing and the remaining proportion 1 − 𝑠 of individuals is produced

from matings between nonrelatives, then 𝜃 = 𝑠𝜃𝐼𝐷 + (1− 𝑠)𝜃𝑈𝑁 . Because 𝜃𝑈𝑁 = 0, this expression can

be simplified into 𝜃 = 𝑠𝜃𝐼𝐷. By substituting this expression into Equation (11), we obtain inbreeding

coefficient 𝐹 at equilibrium: 𝐹 = 8𝜆+𝑠𝑣
8𝜆+𝑣(𝑠+𝑣−𝑠𝑣) .
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