GENOTYPIC FREQUENCIES AT EQUILIBRIUM
FOR POLYSOMIC INHERITANCE UNDER
DOUBLE-REDUCTION

MATERIAL S1: THE APPENDICES

A Derivation of Pr(BBBB| ABBBBBBB)

In this example, we show how to derive the transitional probability from a zygote genotype G =
ABBBBBBB to a gamete genotype ¢ = BBBB. According to Equation (1), my and ny, are respectively
the numbers of copies of Ay in g and G, h is the number of alleles at this locus, and v is the ploidy level.
Letting v =8, h =2, m; =0, my =4, n; = 1 and ny = 7, and expanding the sum formula in Equation

(1), it follows the following expression:
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Note that d,; = 0 whenever j; < max(0, mg — ng) or jp > min(ng,my/2). The coefficients of the above

terms with a gray background are equal to zero.

B Derivation of o; under octosomic inheritance

In this example, we show how to derive the values of alpha for octosomic inheritance in both CES
and PES.
For the case of CES, we first calculate the values of p; for each possible j. Because there are v/2

chromosomes, the maximum value of j is [v/4]. Note that in this case, we have v = 8, then |v/4| = 2



and j =0, 1,2. Now, by Equation (4), we obtain
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Second, we calculate the value of a; under CES where 0 < @ < |v/4], i.e. 0 < i < 2. By Equation
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For the case of PES, we still have v = 8, then |v/4] = 2 and the values of ug, p1 and ps in Equation

(6) are just those values in the case of CES. Now, according to Equation (6), we have
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Furthermore, because of Equation (5), we derive the value of oy, (k= 0,1,2) under PES as follows:
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C Derivation of GFG and GFZ with nonlinear method

Here, we use the tetrasomic inheritance at a triallelic locus under equilibrium to derive the GFG by

using a non-linear method as an example. Under these conditions, we have v = 4 and h = 3. Because

(v/2+h—1

/2 ) = ( ) =6 and (”+h 1) = (2) = 15, there are 6 gamete genotypes and 15 zygote genotypes, so

Equations (8) and (9) determine 6 and 15 equations, respectively.
(i) Simulating meiosis. We denote AA and AB for two gamete genotypes, and P44 and Pap for their
frequencies, and so on. Similarly, denote AABB and ABBC' for two zygote genotypes, and Paapp and

Pappc for their frequencies, and so on. Now, by Equation (8), the GFG can be established as follows:

Pyy = 9 (Paaap + Pasac) + 22 (Paagps + Paape + Paacc)
+T(PABBB + Papgc + Papoc + Paccc),
Ppp = Ppppp + 22 (Pases + Peepc) + 2 (Paaps + Papsc + Pppec)

+% (Paaa + Paapc + Papcc + PBCOC),

Pee = Pocce + H (Pacce + Pooce) + 284 (Paace + Pasce + Pepec)
+9-(Paaac + Paapc + Pappc + PBBBC) (A1)
Pip = = 51 (Paaap + PappB) + ( 1) 5 (PaaBc + Pappe)
+1=4 Pupee,
Pac =15 O“ (Paaac + Pacce) + 22520 Py ace + 521 (Paape + Papeo)
+1= Pagge,
Ppco = oo (PpBc + Ppocc) + 2( o1) (PABBC + Papcc)
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(ii) Simulating fertilization. By Equation (9), the GFZ can be established as follows:



Pasaa = P3,,

Pgppp = Py,

Pecoe = Pée,

Paaap = 2PaaPag,

Pasac = 2PaaPac,

Pappe = 2PapPBB,

Ppppc = 2PppPsc,

Paccc = 2PacPcc, (A2)
Ppccc = 2PpcPec,

Pyapp = 2PsaPpp + P35,
Paacc = 2PaaPoc + Pig,
Pgpce = 2PppPoc + Phe,
Paapc = 2PaaPpc +2PapPac,
Pappc = 2PapPpc + 2PacPps,
= 2PapPcc +2PacPpe-

Papcc

Now, substituting Equation (A2) into Equation (Al), the GFZ are eliminated, and a system of
non-linear equations with 6 equations and 6 unknowns is obtained (whose expressions are more complex
and omitted). On the other hand, the process that transforms the allele frequencies into GFG can be

described by the linear substitution

pa = Paa+ 3(Pap + Pac),
ps = Ppp + (Pap + Ppc),

where pa, pp and pc are the allele frequencies with pa + pp +pc = 1. Combining the linear substitution
with the system of non-linear equations mentioned above, we still obtain a system of non-linear equations
with 8 equations, 6 unknowns (i.e. Paa, Pap, Pac, Peg, Pec and Poc) and 2 parametric variables (i.e.
pa and pp). The solution that is with p4 and pp as the parametric variables is unique and is shown as

follows:
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Therefore, the generalized form for GFG at equilibrium can be directly written as follows:
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Using Equation (9), we can derive the generalized form for GFZ at equilibrium as follows:



[2pata1(3—2pa)]°p% if G = AAAA,
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Where \; = 4papp + 201 (pa + pp — 4papp) + a3(3 + 4papp — 2pa — 2pB).

D GFG and GFZ in hexasomic inheritance

The generalized form of GFG for hexasomic inheritance at equilibrium derived from the linear method

is given by
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Where AAA, AAB and ABC are the genotypic patterns of g. With Equation (9), the generalized form

of GFZ for hexasomic inheritance at equilibrium is given by
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Where )\2 = 370{1, )\3 = 17@1, )\4 = 94’041, )\5 = 9+20¢1, )‘6 = 5*9}7,4, )\7 = 5041+9)\3PA,
)\8 = 5(11 + 9)\3}73, )\9 = 200[% + 450(1)\2]?,4 + 27)\2)\3]?%17 /\10 = 20&% + 450[1)\2]?3 + 27)\2)\3p%, )\11 =

DAPB + Pabc + pBPCc — IPAPBDPC, A2 = 5pa + 5pB + 5pc — 18papp — 18papc — 18pepc + 81papspC.

E Derivation of co-ancestry coefficients in different relationships

The expression of co-ancestry coefficient 6 in mating individuals can be obtained by taken the weighted
average of co-ancestry coefficient between different relationships, where the weight is the frequencies of
those relationships in mating individuals. We first derive the co-ancestry coefficients in the following four

relationships.



In selfing, the individual self-fertilizes. For a pair of alleles sampled from an individual with replace-
ment, the probability is 1/v if the same allele is sampled twice and these are indeed IBD; otherwise the
probability is F'. Hence 0;p = % + %F

In backcrossing, the offspring is fertilized by, or fertilizes, its parent (says f). Let m be the other
parent. Denote gy and gy, for the two gametes which are respectively produced by f and m to form an
offspring. The allele pairs between the offspring and f can be classified into two categories: (i) between
g¢ and f. In this case, for each allele pair, the probability that the two alleles are IBD is equal to 6;p; (ii)
between g,,, and f. In this case, for each allele pair, the probability that the two alleles are IBD alleles
is equal to 6, i.e. the co-ancestry coefficient between mating individuals. Hence 0po = (0;p + 60)/2.

In matings between full-siblings (says a and b), it is assumed that the parents are f and m, and let
gay and gam be the gametes forming a, where g,y is produced by f and g4, is produced by m. Similarly,
gvs and gpy, denote the gametes forming b. For each pair of alleles, the probability that the two alleles
are IBD between gqr-gpr is 0rp, the same as that between gum-gum; and the probability that they are
IBD between g, f-gom is 6, the same as that between ggm-gps. Hence 8pg = (0rp + 0)/2.

In matings between nonrelatives, 6y ny = 0.

Second, we derive the F' in population with a selfing ratio s as an example. Assuming a proportion
s of individuals is produced by selfing and the remaining proportion 1 — s of individuals is produced
from matings between nonrelatives, then 8 = sf;p + (1 — )0y n. Because Oy = 0, this expression can

be simplified into § = sf;p. By substituting this expression into Equation (11), we obtain inbreeding
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coefficient F' at equilibrium: F' = S Tu(sto—s0)"
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