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1 A simple structural equation model for assortative mating
and phenotypic correlation

The term assortative mating refers to sexual selection for mates with similar phenotypes.
To the extent that phenotypes are genetically driven or associated, it can decrease the
genetic variance/increase the genetic homogamy within families. With respect to a given
phenotype, it can take several forms. Primary assortative mating refers to direct selection
on the phenotype of interest, while secondary assortative mating (homogamy) refers to the
indirect effects of population-structure, inbreeding and social stratification (homogamy) on
phenotypic similarity, as well as the effects of primary assortative mating around secondary
phenotypes on the primary phenotype (Rao et al, 1979)[1]. As we discuss in the Main
Text, primary assortative mating is impossible for our phenotype of interest (lifespan): the
selection of mates being an activity of living beings, while complete lifespan can only be
directly observed directly after death.

1.1 Nominal heritability: the foundational model

The simplest consideration of the concept of heritability (h2) is in terms of its definition: the
fraction of phenotypic variance attributable to genetic variance, given that all phenotypic
variance can be divided between “genetic” (VG) and “environmental/other” (VE):

h2 =
VG
VP

=
VG

VG + VE
(1)

In this framework, h2 reflects the correlation that would be expected between two individu-
als whose genetic states are identical (with respect to phenotypically-relevant genetics), but
for whom all other factors that may affect the phenotype are randomly-distributed. Iden-
tical twins are examples where the first criterion is met (identical genotypes), but not the
second (random environmental/other factors). Nonetheless, if the contribution of shared
environmental and other factors could be teased out of the overall correlation between
twins, the remaining correlation would reflect h2 (also excluding dominance and epistasis
variance). The assumption of nominal heritability estimates is that as relatives become
more distant, their shared environment drops to zero and their amount of shared genetics
drops by half with each generation. In nature, the latter assumption is a rule imposed by
the mechanism of meiosis, and the consequential fraction of shared genetics is referred to
as the additive relatedness. Under all of the assumptions listed above, the heritability of
a trait can be calculated easily from the correlations of phenotypes (ρ) between remote
relatives (piblings/avuncular, ρpib; first cousins, ρcuz1; first cousins once-removed, ρcuz1r1;
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etc.):

h2 = 4× ρpib (2)

= 8× ρcuz1 (3)

= 16× ρcuz1r1 (4)

= [...etc...]

In the sections below, additive relatedness will be described in terms of a variable (β) rather
than in terms of the constant 1

2 . The nominal heritabilities described in the equations above
would therefore take the following form, with the further assumption that β = 1

2 :

ρpib = 2β3h2 (5)

ρcuz1 = 2β4h2 (6)

ρcuz1r1 = 2β5h2 (7)

The reason for the extra “2” on the right side of each equation will become apparent when
pathway diagrams are discussed.

1.2 Consideration of non-genetic inheritance

As described in the trio of papers on “Multifactorial Inheritance with Cultural Transmission
and Assortative Mating” by Cloninger, Rice, and Reich [2, 3, 4], the classical formula for
phenotypic variance, VP = h2+e2 = 1 can be modified to include aspects of the environment
that are passed down through families in a similar manner as genetics (Cloninger 1979 [3],
eq.2):

VP = h2 + b2 + e2 + 2whb = 1 (8)

where VP is total phenotypic variance (set to 1), h, b, and e are the extents to which additive
genetic factors, “transmissible sociocultural factors”, and “non-transmissible environment”
influence phenotype, respectively (quotes: Cloninger et al, 1979[3], Table 2). [Note: our
manuscript uses the term “transferable” rather than “transmissible”, but with the same
intended meaning.] Genotypes are partially shared between relatives, as are sociocultural
factors (money, geo-location, etc), making the relative contributions of the two difficult
to distinguish. Therefore, they are sometimes modeled as a single, combined term t that
relates to h and b as follows:

t2 = h2 + b2 + 2whb (9)

where w indicates the degree to which genotype is correlated with sociocultural status. Use
of t2 simplifies equation 8 to:

VP = t2 + e2 = 1 (10)
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The variable t2 is therefore akin to h2, but rather than describing the “genetic variance”
of the phenotype, it describes the variance due to all transferable factors, or “transferable
variance”.

1.3 Consideration of assortative mating

The manner in which assortative mating can increase phenotypic correlation between family
members (a father F , a mother M , and two offspring O1 and O2) is summarized by Rice
1979 [2], Figure 2 (reproduced below, with variable names and topology modified to be
consistent with the rest of our manuscript):

TF

m

t t

TM

TO1 TO2

PO1 PO2

β β
β β

t t

PF PM

Diagram S1

This path diagram, depicting the phenotypic correlations within a nuclear family with two
children, describes transferrable states as latent variables for each family member (T ) and
the phenotypes (P ) that arise as a consequence of those variables. The transferable latent
states represent the genotypes as well as the more-abstract/less-defined “sociocultural”
type. The extent of inheritance from one parent to one child is described by β, and the
extent to which T influences phenotype is represented by t. This model can apply to
total transference, but can also represent genetics or sociocultural factors individually by
substituting h or b for t, respectively. Consideration of the independent contributions
of genetics versus sociocultural factors in an integrated manner leads to path diagrams
of increased complexity (e.g. Cloninger 1979 [3], Fig. 3), but we will continue to use a
combined model as illustrated in Diagram S1.

Assortative mating is modeled by Rice, Cloninger, and Reich [2, 3] in terms of the cor-
relation of parental phenotypes m. Under this framework, the correlation between the
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phenotypes PO1 and PO2 (i.e. ρsib) is:

ρsib = 2(β2t2) + 2(β2t4m) (11)

= 2β2t2(1 + t2m)

While useful for its guiding principles, the precise model in Diagram S1 makes an assump-
tion about assortative mating that does not hold: the model focuses on primary assortative
mating, which is based “directly on phenotypic preference” (Cloninger, 1979[3], p.180). In
that case, the variable t (or h or b) is again relevant to the estimation of assortment (through
the path mt2). However, in the case of lifespan, it is by definition not possible for mates
to observe the phenotype at the time of selection (i.e. dead people are generally ineligible
to get newly-married or to procreate). This caveat, also stated in the assumptions of Rao
et al (1976)[5]: “We suppose that parental phenotypes and the indices of their childhood
environments are determined prior to marriage” (p.228), does not remove the possibility
of assortative mating, but limits it to secondary assortative mating (assortment based on
phenotypic indices of relevance to the primary phenotype but nonetheless distinct from
it; described by Cloninger, 1979[3]) and the sociocultural and genetic homogamy of the
local community from which a mate is selected (this includes inbreeding). This slight vari-
ation on the Rice et al (1979)[2] model from Diagram S1 is illustrated below, in Diagram
S2:

TF

m

t t

TM

TO1 TO2

PO1 PO2

β β
β β

t t

PSF PSM

TF

a

t t

TM

TO1 TO2

PO1 PO2

β β
β β

H
u u

11

22

Diagram S2

where PS represents some combined set of secondary phenotypes that are governed by
similar genetics as the focal phenotype, to the extent described by t2. Mate-assortment
around those secondary phenotypes PS creates a correlation between them, described by
m. In addition, the cultural and genetic homogamy of the available mate pool can be
modeled in terms of a genetic and sociocultural latent state, H, that influences the latent
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states of the mother and father (TM and TF ) to the extent described by the variable u (as
in Rao et al, 1979[1]). The correlation between the latent states of the siblings (TO1 and
TO2) increases as a consequence of these two types of assortment, just as they did due to
primary assortment in equation 11:

ρsib = 2β2t21 + 2β2t21(u2 + t22m) (12)

= 2β2t21(1 + u2 + t22m)

Note an important difference between the effect of primary assortment as modeled in
equation 11 and secondary assortment as modeled in equation 12: in the first case, one
of the factors defining the extent to which assortative mating can enhance the correlation
between siblings’ latent states is the influence of the latent state on the focal phenotype:
t (t1 in eq. 11). That inclusion of t1 in the assortative-mating addendum (1 + t21m)
limits the effect of assortment on phenotypic correlation: a trait with low transferable
variance (or heritability) can never substantially increase the correlation between the latent
states of spouses (or, by extension, siblings), no matter how strong the assortment on the
phenotype. Such is not the case for secondary assortment. The affect of the latent state
on the focal phenotype (t1) is absent from the assortative-mating addendum from equation
12: (1 + u2 + t22m). For non-primary assortative mating, there is no limit to the extent
that assortative mating can elevate the correlations of the latent states.

Moving forward, for simplicity and seeing as we do not attempt to separately address
the values of u versus m versus t2, we abbreviate that transferance pathway as a single
correlation value, a (Diagram S2, right side):

a = u2 + t22m (13)

ρsib = 2β2t2(1 + a) (14)

Note that such a definition does not preclude primary assortment. In the case that primary
assortment were possible, it would be similarly covered by a:

a = u2 + t22m2 + t21m1 (15)

1.4 Consideration of shared household environments

Not all aspects of one’s environment are transferrable: the models of Rice, Cloninger, and
Reich [2, 3] therefore additionally include nodes for siblings’ childhood environments (Ech),
which are correlated to the extent described by ce:sib and influence the phenotype to the
extent described by ech, below (as in Rice et al, 1978[2] Fig 6; or Cloninger et al, 1979[3]
Fig 3):
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TF
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β β
β β

TF

a

t t

TM

TO1 TO2

PO1 PO2

β β
β β

c
Ech Ech

e e

csib

e:sib

ch ch

Diagram S3

For simplicity, we abbreviate that path as csib (right side). Now, with non-transferrable
childhood environment taken into consideration, the correlation between siblings’ pheno-
types becomes:

csib = ce:sibe
2 (16)

ρsib = 2β2t2(1 + a) + csib (17)

If equation 17 were to be fully-extended, and expressed in terms of b2 and h2 rather than
t2, then it would still be missing two sources of genetic variance not shared between other
relative-types except via in-breeding: dominance variance and epistasis variance. The h2

term built into equation 17 only includes additive genetic variance. We do not separately
parameterize these terms here, so csib should be considered to encompass them in addition
to the effect of shared childhood environment.

The sharing of adult household environment is often ignored by structural equation models
because it can be: by defining the phenotype as pre-cohabitation, the effects of this non-
transferrable variable can be ignored (in the words of Rao et al, 1976[5], “We suppose
that parental phenotypes... are determined prior to marriage[;] i.e., cohabitation does not
increase similarity of mates”, p.228-229). However, in the case of lifespan, the phenotype
is not defined until death, at which time spouses will likely have spent the majority of
their lives sharing household environment. We therefore cannot ignore it, and we model
it similarly to the shared childhood household environments of siblings, as a single term
(here, csp):
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a

t t

TF TM

PF PM

c
Ead Ead

e e

a

t t

TF TM

PF PMcsp

e:sp

ad ad

Diagram S4

As for csib, the correlation of spousal household environments includes both a term for the
extent to which the environmental latent states of the adult household Ead are correlated,
described by the variable ce:sp, and the extent to which those latent states influence the
phenotype, described by the variable ead. We combine those terms into a single term for
the resulting phenotypic correlation, csp:

csp = ce:spe
2 (18)

ρsp = t2a+ csp (19)

1.5 Modeling the correlation between siblings-in-law

We combine the models from Diagram S3 and S4 to construct a model for siblings-in-law.
Here, the phenotype of the intermediate sibling/spouse (individual O2) is no longer in play,
only that individual’s latent state TO2. This extended relative-type does not generally share
a household environment, so our model only includes transferrable factors, passed between
family members through inheritance (β) and assortative mating (a):

TF

a

a

t t

TM

TO1 TO2 TSP

PO1 PSP

β β
β β

Diagram S5
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The full correlation between sibling-in-laws’ phenotypes (ρsibL) can be described as the
product of the correlations between each sibling-in-law’s phenotype with the latent state
of the intermediate sibling/spouse:

ρ(PO1, TO2) = 2β2t(1 + a) (20)

ρ(TO2, PSP ) = ta (21)

ρsibL = ρ(PO1, TO2)× ρ(TO2, PSP ) (22)

= 2β2t(1 + a)× ta
= 2β2t2(1 + a)a

1.6 Applying the structural equation model to remote blood relatives

As with siblings-in-law, remote relatives are assumed to not share non-transferable envi-
ronment. This assumption is also made by Cloninger et al, (1979). A pathway diagram
for an avuncular relationship (referred to as a “pibling” pair, short for “parent’s sibling”),
therefore takes the form shown in Diagram S6 below:

TF

a

a

TM

TO1 TO2 TSP

β β

t

TG2

PG2

β βt

PO1

β β

Diagram S6

The path between PO1 and PG2 always passes through the latent transferrable state TO2,
making the overall ρ(PO1, PG2) (referred to as ρpib) equal to the product of ρ(PO1, TO2)
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and ρ(TO2, PG2):

ρ(PO1, TO2) = 2β2t(1 + a) (23)

ρ(TO2, PG2) = βt+ βta (24)

= βt(1 + a)

ρpib = ρ(PO1, TO2)× ρ(TO2, PG2) (25)

= 2β2t(1 + a)× βt(1 + a)

= 2β3t2(1 + a)2

For first-cousins, the situation is similar:

TF

a

a

TM

TO1 TO2 TSP

β β

t

TG2

PG2

β β

a
TSP

t

TG1

PG1

β β

β β

Diagram S7

with all paths between PG1 and PG2 passing through both TO1 and TO2, making the
overall ρ(PG1, PG2) (referred to as ρcuz1) equal to the product of ρ(PG1, TO1), ρ(TO1, TO2),
and ρ(TO2, PG2):

ρ(PG1, TO1) = βt(1 + a) (26)

ρ(TO1, TO2) = 2β2(1 + a) (27)

ρ(TO2, PG2) = βt(1 + a) (28)

ρcuz1 = ρ(PG1, TO1)× ρ(TO1, TO2)× ρ(TO2, PG2) (29)

= βt(1 + a)× 2β2(1 + a)× βt(1 + a)

= 2β4t2(1 + a)3

Similarly to the situation described by Cloninger et al (1979)[3] for remote relatives in
their equations 29-33, the equations for piblings and siblings can be generalized to the
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descendants of siblings (specifically, the ith descendant of a person and the i′th descendant
of that person’s sibling):

ρii′ = 2βn+1(1 + a)nt2 (30)

where n = i+ i′ + 1.

1.7 Applying the structural equation model to remote in-law relatives

A similarly general model can be generated for the spouses of remote relatives (i.e. re-
mote relatives-in-law). Considering piblings-in-law, which can be either the pibling of
one’s spouse (described by ρ(PO1, PSP2)) or the spouse of one’s pibling (described by
ρ(PSP1, PG2)) in Diagram S8:

TF

a

a

TM

TO1 TO2 TSP

β β

t

TG2

PG2

β βt

PO1

β β

a

t

TSP2

PSP2

a

t

TSP1

PSP1

ρ(P   ,P  )SP1 G2

ρ(P  ,P   )O1 SP2

Diagram S8

In both the cases of ρ(PO1, PSP2) and ρ(PSP1, PG2), all connecting paths pass through
ρ(TO1, TG2), flanked by a direct effect on a phenotype on one side (t) and a path through a
spouse’s latent transferrable state (TSP1 or TSP2) to their phenotype on the other (in both
cases, at). The pibling-in-law correlation (ρpibL) is therefore given by:

ρpibL = ρ(PO1, PSP2) = ρ(PSP1, PG2) (31)

= ρ(TO1, TG2)× t× at
= 2β3(1 + a)2 × t× at
= 2β3t2(1 + a)2a
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This is the same formula as given above for ρpib with an additional multiplication by a. The
pattern of multiplying the additive term for a relationship-type by a to get the additive
term for the in-law equivalent relationship type was previously seen for siblings (prior to
consideration of shared household environment; compare eq. 14 to eq. 22). That pattern
can be extended further, to yet-more remote relatives-in-law (i.e. the spouse of a remote
relative, as defined above):

ρii′L = 2βn+1(1 + a)nt2a (32)

where again, n = i+ i′+1, and the in-law relative is either the spouse of the ith descendant
of one sibling or the i′th descendant of the other.

As a reminder: the models above consider total transference, but can also represent genetics
or sociocultural factors individually by substituting h or b for t, respectively. Simultaneous
considerations of both h and b generally include one or more terms to describe the correla-
tion between an individual’s genetic and sociocultural states (for instance, w in Cloninger
et al, 1979[3]; or s and a in Rao et al, 1979[1]). Such considerations greatly complicate these
models and add yet more parameters to an already over-parameterized analysis. Below,
we maintain that simplicity by considering total transference.

2 Over-estimation of heritability due to assortative mat-
ing

In the model framework described above, equations 30 and 32 provide a generalized frame-
work for considering transference of phenotypically-relevant factors between remote rel-
atives and relatives-in-law, respectively. The consequences of assortment on heritability
estimates are worth considering. Below, we illustrate the ability of assortative mating to
inflate estimates of heritability if they are calculated using the assumptions of nominal
heritability. Our discussion below is written in terms of h2 (i.e. assuming no transferrable-
environment contribution, so that b2 = 0 and t2 = h2).

2.1 Modification of expected correlations by the addition of assortative
mating

Assume a trait with 30% heritability (h2 = 0.3), and initially assume there to be no
assortative mating. A plot of additive relatedness versus phenotypic correlation across
relative-types (omitting any contribution from shared household environment) produces a
linear array of points that extrapolates from the origin to the actual heritability, at additive
relatedness = 1:
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h  = 0.3

siblings

piblings
1st-cousins

1st-cousins-once-removed
2nd-cousins

2

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

additive relatedness

ρ

Diagram S9

However, when assortative mating is included, and its coefficient a increases, the plot of
additive-relatedness-versus-phenotypic-correlation becomes increasingly curved, with cor-
relations between increasingly distant relatives being increasingly inflated:

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

additive relatedness

ρ

a = 0
a = 0.4

a = 0.6
a = 0.8

h  = 0.32

Diagram S10

As a consequence of that inflation, heritability estimates taken from any relative-type’s
phenotypic regression/correlation would also end up inflated. That trend is exhibited
below for piblings:
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additive relatedness
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(a = 0.4)

(a = 0.6)

(a = 0.8)
2

2

2

2

Diagram S11

2.2 Error from linear extrapolation through multiple relative-types

While examination of an additive-relatedness versus phenotypic-correlation plot across
relative-types should reveal any substantially confounding effects of assortative mating
on the estimation of heritability, a danger to interpretation is posed by close relatives: the
relative-types that lay farthest to the right on these plots (siblings, parents, and monozy-
gotic twins) also share household environment. For siblings, for example, that extra non-
transferrable environmental correlation is expressed as csib in equation 17. The danger
arises because in all but the most extreme cases, the curvature of the additive-relatedness-
versus-phenotypic-correlation plot for distant relatives will be subtle versus the position of
the nearest-relative’s datum. The combined increased-sharpness of the slope at the far left
of the plot, together with the shared-environment-driven inflation of the rightmost datum,
will produce a series of points that may fall along an approximately-straight line, whose
y-intercept is close to the origin. The curvature that arises from assortative mating is
scarcely observable, and the shared-household during childhood term (csib) is erased in its
contribution to the overall slope.

Below, in Diagram S12, is a modeled example illustrating the potential error described
above. The model includes a true heritability (h2) of 0.3, with an assortative-mating coef-
ficient a of 0.3. The true relationship between additive relatedness and phenotypic correla-
tion, excluding shared childhood environment, is shown in grey, with the distant-relative
data (from piblings, 1st-cousins, 1st-cousins-once-removed, and 2nd-cousins) calculated
from equation 30. The sibling value is calculated from equation 17, with csib set to 0.05.
The dotted line shows a linear regression through those five points: its seemingly-consistent
slope and y-intercept close to zero give the impression of a phenotype with high heritability,
low assortative mating, and negligible shared-childhood environment effect (none of which
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is true):

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

additive relatedness

h  = 0.3
a = 0.3

2

c    = 0.05sib

best-fit line:
slope = 0.44
y-int. = 0.02

ρ

0.46

Diagram S12

In summary: without direct examination of assortative mating, the additive-relatedness
versus phenotypic-correlation plot of a low-heritability but highly-assorted trait with a large
influence from household environment will look close enough to that of a highly-heritable
trait with little-to-no assortment nor household environment effect.

3 Solutions for terms in our structural equation model

In this section, we described methods for estimating the core parameters of our structural
equation model as described in Section 1. These include the terms for transferrable vari-
ance, assortative mating and inheritace (t2, a, and β) as well as the two non-transferrable
shared household environment terms used here (csib and csp).

3.1 Co-siblings-in-law: two informative relative types

The term “co-sibling-in-law” describes two distinct relationship types, each of which is
independently informative for finding solutions to the terms in our structural equation
model. The first is the sibling of a sibling’s spouse (abbreviated “sib-law-sib”, or sibLsib),
with the correlation of phenotypes described by the pathway diagram below:
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PS4PS1

TS2 TS3 TS4TS1

TF1 TM2 TF2TM1
aa

β β
β β

β β
β β

a

tt

Diagram S12

This relationship includes all of the terms of siblings-in-law, as described in equation 22, but
with equivalent paths between siblings’ latent states traversed twice, and that correlation
term therefore squared:

ρ(PS1, TS2) = ρ(TS3, PS4) = 2β2(1 + a)t (33)

ρ(TS2, TS3) = a (34)

ρsibLsib = ρ(PS1, TS2)× ρ(TS2, PS3)× ρ(TS3, PS4) (35)

= 2β2(1 + a)t× a× 2β2(1 + a)t

=
[
2β2(1 + a)

]2
at2

The second co-sibling-in-law relationship type is the spouse of a spouse’s sibling (abbrevi-
ated ”law-sib-law”, or LsibL), with the correlation of phenotypes described by the pathway
diagram below:

PS4PS1

TS2 TS3 TS4TS1

TF TM

a

a

β
β β

β

a

tt

Diagram S13

This relationship again includes all of the terms of siblings-in-law, as described in equation
22, but this time the path between spouses’ latent states is traversed twice, so its correlation
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term (a) is squared:

ρ(PS1, TS2) = ρ(TS3, PS4) = at (36)

ρ(TS2, TS3) = 2β2(1 + a) (37)

ρLsibL = ρ(PS1, TS2)× ρ(TS2, PS3)× ρ(TS3, PS4) (38)

= at× 2β2(1 + a)× at
= 2β2(1 + a)a2t2

3.2 Definition of a useful meta-term: Asib

To simplify the discussion and equations below, we will define a meta-term, Asib, meant
to represent the additive-genetics (or more properly, transference) portion of the sibling
correlation. In equation 17, the phenotypic correlation between two siblings was defined
as:

ρsib = 2β2(1 + a)t2 + csib

We define Asib to be the full description of the transferrable portion of that correla-
tion:

Asib = 2β2(1 + a)t2 (39)

The value of Asib can be calculated by using the square of the correlation of siblings-in-law
(sibL; equation 22) divided by the correlation of co-siblings-in-law of the LsibL variety
(equation 38) to cancel out the extra a in those equations:

ρ2
sibL

ρLsibL
=

[
2β2(1 + a)× at2

]2
2β2(1 + a)× a2 × t2

(40)

=

[
2β2(1 + a)

]2 × a2 × t4

2β2(1 + a)× a2 × t2

= 2β2(1 + a)× t2

= Asib

3.3 Calculation of the transferable variance term t2

In a similar manner to the calculation of Asib in equation 40 above, we can calculate the
equivalent term but without the t2 component by dividing the correlation of co-siblings-in-
law of the sibLsib variety (equation 35) by the correlation of siblings-in-law (sibL; equation
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22). We’ll label this meta-term Fsib:

ρsibLsib
ρsibL

=

[
2β2(1 + a)

]2 × at2
2β2(1 + a)× at2

(41)

= 2β2(1 + a)

= Fsib

If we divide Asib by Fsib, all components of the two meta-terms cancel out except for t2,
allowing us to calculate its value. Substituting their formulas for calculation from observed
correlations, we arrive at an equation for calculating t2 from data:

t2 =
2β2(1 + a)× t2

2β2(1 + a)
=
Asib

Fsib
(42)

=
ρ3
sibL

ρLsibL × ρsibLsib

3.4 Calculation of the assortative mating term a (two methods)

This section will describe two methods for calculating the assortative mating term a, each
using a distinct set of correlation values as their source data. We will refer to the two
estimates given by these methods as a′1 and a′2. The first uses a combination of sibling-in-
law and co-sibling-in-law data; the second is more general, using any blood-relative type
in conjunction with its in-law equivalent.

The first estimate, a′1, uses sibling-in-law sibL correlation in conjunction with the co-
sibling-in-law correlation of the law-sib-law type, LsibL. Through division of the latter
(eq. 38) by the former (eq. 22), all variables other than an a coming from one of the
exterior spousal pairs are cancelled:

a′1 =
ρLsibL
ρsibL

=
2β2(1 + a)× a2 × t2

2β2(1 + a)× a× t2
= a (43)

The second estimate, a′3, exploits the structural similarity between the equations for remote
relatives (ρii; eq. 30) and their in-law equivalents (ρiiL; eq. 32). If the latter is divided by
the former for any consistent values of i and i′, all terms cancel except for a:

a′2 =
ρii′L
ρii′

=
2βn+1(1 + a)nt2a

2βn+1(1 + a)nt2
= a (44)

3.5 Calculation of the inheritance term β

With t2 and a solved, there are many equations that can be used for the solving of the path
coefficient for the sharing of transferable factors between parent and child, β. We present
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a solution here that is once again reliant on siblings-in-law (sibL; eq. 22) and the two
varieties of co-sibling-in-law (LsibL from eq. 38 and sibLsib from eq. 35). This derivation
begins by eliminating, through division, the final spousal edge’s a term, in equation 45.
Then, in equation 46, we replace the remaining a from the parental (1 + a) term with the
solution for a presented above, in equation 43. We then solve for β, arriving at the solution
in equation 47:

2× ρsibLsib
ρsibL

=
2×

[
2β2(1 + a)

]2 × a× t2
2β2(1 + a)× a× t2

(45)

= 2× 2β2(1 + a)

= 4× β2(1 + a)

4× β2(1 + a′1) =
2× ρsibLsib

ρsibL
(46)

4× β2(1 +
ρLsibL
ρsibL

) =
2× ρsibLsib

ρsibL

4× β2(
ρsibL + ρLsibL

ρsibL
) =

2× ρsibLsib
ρsibL

4× β2(ρsibL + ρLsibL) = 2× ρsibLsib
2× β

√
ρsibL + ρLsibL =

√
2× ρsibLsib

β =
1

2

√
2× ρsibLsib
ρsibL + ρLsibL

(47)

3.6 Shared non-transferrable environment: calculation of csib and csp

With Asib defined above as the additive-transference portion of the sibling correlation (eq.
39) and solved using ρsibL and ρsibLsib (eq. 40), we can return to equation 17 for siblings and
use the difference between that observed value and the calculated value for Asib to solve
the shared childhood environment component of sibling correlation (as discussed above,
this term also encapsulates dominance and epistasis variance):

ρsib = 2β2(1 + a)t2 + csib

csib = ρsib − 2β2(1 + a)t2

= ρsib −Asib

csib = ρsib −
ρ2
sibL

ρLsibL
(48)

Similarly, we can use the three (co-)sibling-in-law relationships to identify the magnitude
of spousal phenotypic correlation (ρsp) that is due to shared adulthood environment rather
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than assortative mating based on transferable factors. In equation 19, the correlation
between spouses is defined. Rearranging that to solve for the shared-environment term
(csp), we get:

csp = ρsp − at2 (49)

The sum on the right has two components. The first is a directly-observable correlation
value (ρsp). The second is a combination of variables that were solved above (at2). Using
the structural equations for siblings-in-law (sibL; eq. 22) and co-siblings-in-law of the
sibLsib variety (eq. 35), we can calculate at2 as follows:

ρ2
sibL

ρsibLsib
=

[
2β2(1 + a)at2

]2[
2β2(1 + a)

]2
at2

= at2 (50)

Substituting that solution for at2 into equation 49, we arrive at a means of calculating csp
from observable data:

csp = ρsp −
ρ2
sibL

ρsibLsib
(51)

3.7 Estimation of t2 by the assortment-correction method

Above, we described methods for estimating all of the core parameters of our structural
equation model (t2, a, and β) using three similar and informative relationship-types:
siblings-in-law (sibL) and two types of co-sibling-in-law (LsibL and sibLsib). For remote
relatives, such trios of similar relationship-types are lacking, being either not similar in the
same manner as the three classes of (co-)siblings-in-law or impractical to efficiently measure,
computationally, across a massive pedigree. However, for one parameter, measurement is
always straightforward: a, using similar in-law relatives and equation 44.

We have seen the major impact that assortative mating can have on the calculation of
inaccurate heritability estimates (Diagram S11,S12). With knowledge of the a parameter’s
value, those effects can be mitigated by cancelling a out of the equations. Starting with the
equation for phenotypic correlation between remote relatives (eq. 32) where n = i+ i′ + 1
for the ith and i′th descendants of a pair of siblings, we establish the relationship between
correlation values and the non-assortative terms:

2βn+1(1 + a)nt2 = ρii′

2βn+1t2 =
ρii′

(1 + a)n

2βn+1t2 =
ρii′[

1 + (ρii′L/ρii′)
]n (52)

Equation 52 is equivalent to the traditional equation for calculating heritability, with 2βn+1

being the additive relatedness term, and with the denominator on the right side cancelling
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out the effects of assortative mating. Traditionally, for genetics, β is not treated as a
variable, but rather is given its meiotically-imposed value of 1

2 . We do the same here, to
arrive at our “assortment-corrected estimate of transferable variance” (t2′ac; eq. 53):

t2 =
1

2βn+1

ρii′[
1 + (ρii′L/ρii′)

]n
t2′ac =

1

2(1
2)n+1

ρii′[
1 + (ρii′L/ρii′)

]n
= 2n

ρii′[
1 + (ρii′L/ρii′)

]n
t2′ac =

[ 2

1 + (ρii′L/ρii′)

]n
ρii′ (53)

4 Identity-by-descent analysis of SAP accuracy

4.1 Genotyping and IBD-calculation methods

Data utilized for this research project was de-identified and anonymized prior to its use.
Samples are collected as follows: a customer orders an AncestryDNA kit; upon receiving
the kit, the customer collects saliva into a sample stabilizing solution and mails the sample
to the laboratory; DNA from the saliva is extracted; finally, genotypes are called using
an Illumina genotyping array (details below). In order to be included in this study, cus-
tomers must have completed two steps: activate a DNA sample by providing basic personal
information - including year of birth, name, gender and consent to research. Next, the cus-
tomer must have associated their DNA sample to a user generated pedigree and made this
pedigree public. This analysis is based on a June 19, 2016 snapshot of 698812 genotyped
individuals linked to the SAP. SNP variants were called by technicians at the Illumina
FastTrack Microarray Services lab using the GenomeStudio platform. Genotype data was
generated using an Illumina genotyping array with approximately 730,000 SNPs.

IBD was measured with a custom algorithm, J-GERMLINE (Ball et al., 2016)[6] based
upon the GERMLINE algorithm (Gusev et al. 2009)[7]. An additional down-weight of
IBD matches less than 90 cM was applied in the form ‘Timber’ to filter uninformative
matches (Ball et al., 2016)[6].

4.2 IBD between in-law relatives

We examined IBD matches between spouses and in-law relatives (Fig. S1A,B). The mean
value of IBD matches between spouses was 14.0 cM, or 0.2% of the genome. This was the
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equivalent of the IBD-sharing expected for 4th cousins (Fig. S1A). Siblings-in-law and 1st
cousins-in-law shared similar values, with IBD sharing equivalent to that of 4th cousins and
4th cousins once removed, respectively. Moving out to more distant relatives, we observed
that the sharing of IBD between in-law relatives dropped in parallel with the two-fold
dilution per relative-degree that was both expected and observed for blood relatives (Fig.
S1B). In-law relatives thereby maintained an approximately 27-fold (128-fold) dilution of
genetics versus their blood-relative equivalents. Given this observed less-than-one-percent
contribution of genetic similarity through IBD for in-law versus genetic relatives and be-
tween spouses, we considered IBD-sharing (i.e. inbreeding) to be a negligible contributor
to the assortment that was observed in later analyses.

5 Evaluation of standard-error accuracies within the net-
work structure of the SAP

The method described in the Methods of the Main Text for estimating S.E. is standard,
and it is specifically recommended for heritability error estimation (“The precision of an
estimate of heritability. . . is easily obtained from the standard error of the regression or
correlation from which the heritability is estimated.” Falconer & Mackay, 1996[8], p.177).
However, in the context of large pedigrees, it is possible for relative-pairs to be less-than-
independent of one another (e.g. for two siblings A and B who are 1st -cousins of siblings C
and D, the 1st-cousin datum (A,C) is only partially independent of the (B,D) datum). This
complication, and the complexity of comprehensively accounting for it, has led some authors
to conclude that it “is not possible to place standard errors on the heritability estimate
of the phenotypes due to the complex relatedness structure of individuals” (Zaitlen et al,
2013[9], p.10).

5.1 Method: empirical estimation of correlation errors

To address and quantify the potential under-estimation of error by the standard technique,
we performed a series of analyses to measure the degree to which error was under-estimated
by the sample-size statistic described in the Methods. For three series of heritability esti-
mates across decade-long birth cohorts, we performed parallel analyses using independent
sets of probands from the same birth-decade: those with years-of-birth that were either
even- or odd-numbered. We presumed these data sets to be independent, but to nonetheless
be unlikely to differ substantially due to historical or demographic trends.

For a subset of the heritabilities calculated in this manuscript using probands from decade-
long birth cohorts, each birth cohort was split by probands born in even versus odd years.
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For each split cohort, the heritability and its nominal S.E. were estimated for each sub-
cohort. Standard errors of the mean are assumed to be normally-distributed, and their
values can therefore be considered similarly to the standard deviation of a normal distri-
bution. Generally, the variance of the differences between random draws x and y from two
independent distributions x and y is given by the equation:

σ2
x−y = σ2

x + σ2
y (54)

In our case, the expected standard deviation for differences within the pairs of assumedly-
equivalent cohorts is given by the standard errors of the respective estimates. So if ρeven
and ρodd are the correlations from the even-year and odd-year sub-cohorts, respectively, and
σeven and σodd are the standard errors of those estimates, respectively (i.e. the standard
deviations of the error distributions), then the difference between those two correlations
(∆even−odd) will have an expected distribution with a standard deviation (σ∆even−odd

) given
by:

σ∆even−odd
=
√
σ2
even + σ2

odd (55)

In order to evaluate the relationship between traditionally-calculated versus observed estimate-
error, we normalized each observed estimate-difference between equivalent even-year versus
odd-year cohorts (∆norm), dividing it by the expected difference given by the respective
S.E.’s:

∆norm =
ρeven − ρodd√
σ2
even + σ2

odd

(56)

The standard deviation of the distribution of ∆norm values (σ∆norm) was therefore expected
to be 1. Greater or lesser values would therefore indicate decreased or increased precision
of the estimation method versus the reported standard errors, respectively.

5.2 Result: observed errors were approximately as-expected

Looking across three relative-types (siblings, 1st cousins, and 1st cousins in-law), the ob-
served differences between even-year versus odd-year sub-cohorts were in one case slightly
greater than expectation (siblings, at 105.4% the expected deviation) and in two cases
slightly less than expectation (1st cousins, at 82.5% the expected deviation; and 1st cousins
in-law, at 87.4% the expected deviation). In all three cases, the deviation from expectation
was consistent across the full range of powers, supported the generality of these under-
estimations. These results indicated that the datum-weighting strategy we employed for
calculation of standard errors (see Main Text, Methods) has adequately tempered our re-
porting of errors, and that the error bars presented throughout the paper can be taken at
approximately face value.
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6 Gompertzian mortality hazard through recent human his-
tory

6.1 Method: measurement of age-specific mortality hazard

For each analyzed birth cohort, all individuals with appropriate years of birth and valid
lifespans (up to 120), and also satisfying other specified criteria (gender, parenthood, etc.;
see Main Text, Methods), were pooled into a population. Age-specific survival was cal-
culated by iteratively subtracting the number of people who died at each age from the
population total, moving from young to old. Age-specific death rates (da) were calculated
as the number of people dying at age a divided by the number of people surviving up to
age a. Those were used to calculate age-specific hazard (hza) using a simplified Sacher
formula (Sacher, 1956 [10]; Gavrilov and Gavrilova, 2011[11]):

hza = −ln(1 = da) (57)

6.2 Lifespan differences between genders varied through history

As discussed above, the reduced-heritability observed between relatives from distinct birth
cohorts implied the alleles that affect lifespan to be non-overlapping between historical eras.
Historical variation in the factors affecting human lifespan was evident when viewing the
profound increase in average adult lifespans (i.e. for individuals who had recorded children
in the SAP) across the birth cohorts from this study (Figure S3A). The profundity of
change to mortality hazard was further illustrated by the inconsistency of gender-advantage
over the 120 years pictured. In the 20th century, female lifespans are well-documented
to have exceeded those of males, with much debate as to the relative contributions of
sex-specific biology versus sociological factors (Gjonça, 2005)[12]. While female lifespan
advantage was substantial post-1900, it diminished moving backwards in time, and flipped
to a disadvantage pre-1870 (Figure S3A).

Age-specific mortality hazard provided more insight into the gender-specific dynamics of
lifespans through history (Figure S3B). Human lifespan is known to be distributed as
described by Gompertz: in mid-to-late life, mortaility is distributed according to a Gom-
pertz distribution, whose defining feature is exponentially-increasing hazard (i.e. linearly-
increasing log-hazard; Gompertz, 1825)[13]. In early life, as noted by Makeham (1860)[14],
age-independent extrinsic hazards can overwhelm the Gompertzian trend, resulting in an
approximately stable hazard. Both of these features were repeatedly observable across the
birth cohorts of our study, for both genders (Figure S3B).

Several gender-specific deviations from Gompertzian expectations were apparent in the
age-specific mortality hazard plots. For males, several transient “bumps” appeared in
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young-adulthood; in each case, the age-spans of elevated hazard matched with birth-cohort
to corresponded to military enlistment ages for major wars. Members of the 1830-1839
cohort were 22-35 years old during the U.S. Civil War, 1861-1865 (bump around 25-35);
members of the 1890-1899 cohort were 18-28-year-olds during U.S. involvement in World
War I, 1917-18 (bump around 25); and members of the 1910-1919 cohort were 22-35 years
old during U.S. involvement in World War II, 1941-1945 (bump around 25-35y; Figure
S3B).

In early cohorts, female mortality hazard was elevated across an early-life age-window that
corresponded well to the interval of female fertility (Fig. S3B): beginning with the onset of
reproductive maturity in the mid-to-late teens (Apter, 1980; Anderson et al, 2003)[15, 16]
and ending menopause in the mid-40s (Gold et al, 2001)[17]. This interval was consistent
with birthing-age data in the SAP, shown for the 1900-1909 birth cohort in Fig. S3C.
Historically, the danger of childbirth is known to have dropped dramatically across the
1800’s (Cutler et al, 2006)[18], consistent with the loss of elevated female-mortality hazard
in that interval across the birth cohorts shown in Figure S3B.

6.3 Gompertzian hazard was consistent through history

A second trend in hazard distinguished males from females: across the 19th century,
while the Gompertzian trend in late-life mortality hazard was consistent for both men
and women, the y-axis placement of the hazard slope decreased rapidly for females but
slowly for males (Figure S3B). This across-the-board lowering of hazard likely reflected
the multitude of progress made by humankind in medicine, health, and safety over the
19th and 20th centuries. Notably, however, the doubling-rate of mortal hazard with age
remained approximately constant across that historical span (Figure S3D).
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7 Supplemental Figure S1: Identity-by-descent evaluation
of SAP relationships.
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7.1 Figure S1 Legend

Identity-by-descent evaluation of SAP relationships.

• Panel A: for select non-genetic relationships, the base-2 log mean fraction of the
genome shared-IBD is plotted on a linear representation of the expected value, given
additive relatedness, for other relative-types. Observed values for non-genetic rela-
tives are shown in green (spouses), cyan (same-gendered in-laws), and red (opposite-
gendered in-laws). Ideal reference values are in grey.

• Panel B: for relative-types of increasing additive relatedness (x-axis), the base-2 log
values of four fractional-shared-IBD values (y-axis) are plotted: the ideal value based
on additive relatedness (black), the observed value in the SAP (green), the observed
value for in-law equivalents of the same gender (cyan), and the observed value for
in-law equivalents of opposite genders (red).
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8 Supplemental Figure S2: Evaluation of standard-error ac-
curacies
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8.1 Figure S2 Legend

Evaluation of standard-error accuracies

• Panel A: Empirical versus N-based estimate errors, using sibling correlations. Pairs
of correlation estimates taken across particular gender combinations (MM, FF, FM,
or MF) and proband-relative birth-year offsets (1-10y, 11-20y, 21-30y) from particular
decade-long birth cohorts; each pair is the estimate taken using probands born in the
even- versus odd-numbered years of the decade. X-axis: expected difference between
two estimates based on their respective standard errors. Y-axis: observed difference,
divided by the expected difference. Green dots: ivalues for one estimate-pair. Green
solid line: the mean of y-axis values. Red lines: expected standard deviations of y-
axis values (1 unit from the mean). Green dashed lines: observed standard deviations
of y-axis values.

• Panel B: Empirical versus N-based estimate errors, as in Panel A, using first-cousin
correlations.

• Panel C: Empirical versus N-based estimate errors, as in Panel A, using first-cousin-
in-law correlations.
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9 Supplemental Figure S3: Consistent Gompertzian mortal-
ity hazard through history
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9.1 Figure S3 Legend

Consistent Gompertzian mortality hazard through history

• Panel A: Mean lifespan for males (cyan) and females (red), by decade birth cohorts.

• Panel B: Age-specific base-10 log(mortality hazard per year) for males (cyan) and
females (red), for assorted birth-decade cohorts.

• Panel C: The distribution of ages at which parents (born 1900-1909) had children
(mothers: red; fathers: cyan).

• Panel D: The doubling rate of human mortality hazard, by birth decade cohort,
measured using the increase of age-specific hazard between the ages of 65 and 70
(blue and red), or 75 and 80 (cyan and pink), for males (blue and cyan) and females
(red and pink).
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