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1. Analytical model to derive the coefficients when considering constant, only additive
and dominance effects (cnuct) or additive, dominance and epistatic effects (Cnuciepist)

1.1. Constant fitness effect and constant dominance level of mutations across fitness loci

We consider that fitness is determined by a set of N loci with two segregating alleles, a
wild type, A, and a deleterious one, a. To illustrate the rationale of the model we first consider
that all mutations have the same effects on fitness but these effects can differ between phases

of the life cycle. For any locus k, fitness is as follows:

In haploids:
Ak 1

ak l-0
In diploids:
A 1
Ak 1-hs
akak 1-s

We introduce the indicator variables X«' that equals 1 when the ax allele is present in a haploid
genome i and O otherwise. The total number of deleterious alleles carried by an individual is
thus n; = YN_, X} for a haploid individual, and n;; = XN_, (X} + X]) = n; + n; for a diploid
individual. We also assume that fitness is multiplicative across loci so that for haploid
individual i:
w; = w, (1 —0)" =~ weexp(—an;) (1)

where w, represents the baseline fitness of a hypothetical haploid genotype with no
deleterious mutations. The approximate expression is valid if we assume small fitness effects

(0 «1,and hs « 1 and s < 1, see below). Similarly, for diploid individual ij:

N N
W;; = W, exp (—th(X}; +X]) —s(1—-2h) Z X,iX,{) (2)
k=1 k=1

The terms in the exponential can be rewritten as:
N N
S i j 1 i j j i
-5 ) (X +x) +s Z(Xk(1—xk)+xk(1—xk)) (3)
k=1 k=1

We can note that X.(1—X;) + X/(1 - X£) is 0 if the two haploid parents share the same

—2h

allele and 1 otherwise, so d;; =% II¥=1(XIi<(1 -xN+x](1 —X,i)) is the proportion of

selected loci that are heterozygous in the diploid offspring (i.e. the observed pairwise genetic

distance between haploid parents i and j at the N fitness loci) between the two haploid parents.
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So:

S 1—-2h
Wij = WO exp (-E(Tli + nj) +s (T) Ndl]> (4)

We also assume the following relationship between fitness effects in haploids and diploids:

s = c g, so that (4) can also be written as:
co co

Similarly, we can account for mitochondrial effects and noting o', n;, and o' the
corresponding parameters for mitochondrial mutations.
Assuming again multiplicative and small effects, we have:
w; = woexp(—an; —a'n;)  (6)
and
W;j = Wyexp (—% (n;+n;)+co (% — h) Nd;; — C'a’ni'> (7)
where parental i is the mitochondrial donor.
Noting, 4; = —on; and A} = —o'n; and taking the logarithm, (6) can then be rewritten as:
In(w;) =In(wy) + A; + A; (8)
and (7) as:

Ai+Aj
2

ln(Wij) =In(Wp) + ¢ —Hd;j + A, (9),

With H = Ca(%—h)N. Because we do not know which alleles are deleterious, d;;, the

ij
genetic distance at the N selected nuclear loci cannot be computed directly. However, we can
note that dij depends on the kinship, f;;, between the two haploid parents and on the genetic
diversity at selected loci, as the expectation of dij over all possible pairs of haploid parents

with a given kinship f;; is:

N
1
Eldy] = - fipy ) 2x(1-x) (10)
k=1

where x,is the allelic frequencies at the k™ locus. Instead of dij we can thus use D;;, the

j!
genetic distance computed across the whole genome, whose expectation also verifies equation
(10) with summation over Ny, the total number of deleterious or neutral loci in the genome.

Tldeleterious

The two distances are thus expected to be proportional to a factor p = , With p

equals the ratio of the average heterozygosity at the N selected allele (Tgeieterious =



%Z’,lezxk(l—xk)) over the average heterozygosity over the whole genome (m; =

Nizgil 2x;, (1 — x;)). Hence, equation (9) can be rewritten as:
T

A+ A;
In(W;;) = In(W,) + c— > L — HpD;; +c'4;  (11)

Note that In(w,) and In(IW,) can include both genetic effects (e.g. a “type” factor with two
levels (haploid vs. diploid) to test for intrinsic fitness differences between haploids and
diploids) and environmental effects (e.g. block, treatment etc.). The coefficients ¢, ¢’, and pH

can be directly estimated from the data using this model.
1.2. Varying fitness effects and varying dominance levels of mutations across fitness loci

Now we can extend this model by assuming that each mutation has its own specific effect.

For locus k, fitness is as follows:

In haploids:

Ax 1

ak 1-ox
In diploids:
AAc 1

Aak 1 —hksk
akak  1-sk

For a haploid individual i:

N
W; = W, exp (— Z akX,ic) (11)

=1

And for a diploid individual ij:

N N
W, = Wy exp (— Z hesi(XE+ X)) — Z s (1— th)x,ix,{> (12)
k

k=1 =1

As in (3) the terms in the exponential can be rewritten as:

-V (X" . Xi) £ > s (52 (- ) + XU - xD) (3)

k=1

For each locus k, we can define two random variables Y and Z so that: y,=s, (l_jh") and

zk:(X,‘;(l—X,{) +X,{(1—X,‘;)). As in the constant model above, we note the pairwise



genetic distance between parents: E[Z] = d;; = ~ YN, (X;;(l -xD+x](1 —X,i)) and

E[Y] = %Z’,}’zl Sk (1_§h"). If the number of loci is large, we have:

YN_ s, (1‘%”") (X,§(1 —x))+xi(1- X,i)) = NE[YZ] = NCov[Y, Z] + NE[Y]E[Z].
We assume that variation among loci in selection coefficients or in dominance is sufficiently
small, so that Cov[Y, Z] = 0. Thus, the second part of (13) is:

isk (1 _ZZh") (xi(1-x) +x[(1- X)) =dy zN: Sk (1 _ZZh") (14)

We set:

N
1
Onucl = N O
k=1
N
1
Snuct = N Sk
k=1

N
= Sk >

k=1
We also need to assume a relationship between fitness effects in homokaryons and

heterokaryons. For each locus k, we have:
Sk = CkOk

Snucl

1 . . .
Crucl = NZ’,Q’zl Cp = if we assume the covariance between ¢, and gy is zero.

nucl

Again, we assume that n;, the number of mutations in each haploid individual is large so that:
N

i _
Z Gka = N;Onyci

k=1
Combining these expressions, we can write fitness in (11) and (12) as:

w; = Wy eXp(—n;0py¢1) (15)
Cnucl Onucl
Similarly, we can account for mitochondrial effects assuming N’ mitochondrial loc and set:
NI
1
Onit = VZ Oy’
k=1
NI
1
Smit = Vz Sk!
k=1



Skl = CkIO'k/

Smit

Cmit = Zk 1Ck! =~ , If we assume the covariance between c;,» and oIS zero.
mit

Assuming multiplicative effects, we have:

w; = W exp(—(Onucii + Omieny))  (17)
where n; is the number of mitochondrial mutant alleles and a,,;; the average fitness effect of
mutant alleles across N’ mitochondrial loci.
Mating between two haploid genotypes with n; anf n; nuclear mutant alleles and where
genotype i provides a mitochondrion with n; mitochondrial mutant alleles produces a diploid

genotype of fitness:

Tli+n'

Wij = Wy exp <_Cnuclanucl (T]> - Cmito-mitng + din) (18),

where c,,c10nuc Tepresents the average diploid fitness effect of nuclear mutant alleles across
the N selected loci and c,,,;:0,,;: represents the average haploid fitness effect of mitochondrial
mutant alleles across the N’ selected loci, d;; represents the genetic distance at the N selected
loci between haploid parents i and j and W, represents the baseline fitness of a hypothetical
diploid genotype with no deleterious mutations. Noting, A; = —on; and A; = —a¢'n; and
taking the logarithm, (17) can then be rewritten as:
In(w;) = In(wy) + A; + A; (19),
and (18) can be rewritten as:
In(W;;) = In(Wp) + ¢yt # + CmicA} + dijH = In(Wp) + Crct S8y ¢ AL+ D;;pH
(20),

where D;; is the genetic distance computed across the whole genome and p = M (see
T

Eq. (11) above for details). Again, In(w,) and In(W,) can include both genetic effects (e.g. a
“type” factor with two levels (haploid vs. diploid) to test for intrinsic fitness differences
between haploids and diploids) and environmental effects (e.g. block, treatment etc.). The

coefficients c, ¢’, and pH can be directly estimated from the data using this model.

1.3. Varying fitness effects, varying dominance levels of mutations and varying epistatic

effects across fitness loci

In the previous model epistatic interactions are not considered. Epistatic parameters cannot be
estimated with fitness data only for haploids and diploids. Additional crosses (such as F2)

would be necessary (for example see Lynch 1991). However, we can still write the model to



evaluate how epistasis might affect our previous predictions. Here we consider pairwise
epistatic effects and neglect higher order epistatic interactions. In haploids, only additive x
additive epistatic interactions are possible. We also assume that that they are the sole epistatic
interactions in diploids (i.e. we neglect additive x dominance and dominance x dominance

epistatic interactions). Two-locus fitness are thus written:

For haploids:

AdAl 1

Acar 1—ox

aAl 1-a

axa (IL-o)(l—0)+en

For diploids:

AAk AlA 1

Axak AIA 1 — hksk

akak AlAI 1—sk

AAk Al 1-hisi

Axax Ailai (2 —hksk) (1 —hisi) + ex
akak Aial (1—s«) (1 —hisi) + 2ex
AAk asa 1-si

Axak aia (1 —hksk)(1 — s1) + 2ex
akak aia (1 —sk) (L—si1) + dex

Note that e and e can be positive or negative.
Multilocus fitness are now be written as:

For haploid individual i:

N N
wW; = Wy exXp <_ Z O_ka Z Slele> (21)

k=1 =1 1>k
For diploid individual ij:
N

N
Wij = Wyexp <— Z hiesi (XE + X]) + z (1 = 2h ) XEX]

N
_ z Z e (XEXE+ XEx] + XIx} + x]x] )) (22)
k=1 I>k

We note:

“N(N— 1)228’“

=11>k



¢= N(N—1)zze“

=1 1>k

and we assume the following relationship between effects in haploids and diploids:

€ = Cnuciepist€

Finally, we can express the sum involving indicator variable as follows:

RRTEEEE

=1 1>k
ZZXJXJ "J("J 1)
=1 1>k
i +n] N
Zxkx +ody
N N N
> Z(x,zxz +X1x]) = Z > xixi = xix}
k=11>k k=11=1 k=1
n;+n; N 1
:ninj—T—gdU‘ :E(nl(n]—1)+n](nl_1)—Ndl])

Combining all these expressions, we can write fitness as:
&€
w; = W, exp (—nia — Eni(ni — 1)) (23)

CnuclEpistg)

Wl-j:WOexp< nuel® (n+ny) + dy (1 - >

CruclEpist€
Note that epistatic interactions also appear with the genetic distance term. This is due to the
fact that in diploids, in addition to cis-interactions (which are already present in haploids)
there are also trans-interactions (between mutations from the two haploid parents).
From a statistical point of view, we can write:

In(w;) =In(wy) — A; — E; (25),

Ait+Aj CnuclEpist€
ln(Wij) = ln(WO) — Chucl % + dij (H - n%w) — ChuclEpist (Ei + Ej +

< \/(8EL- +)(8E; +¢) — e)) (26),

where Ei and E;j correspond to epistatic effects. If n; and n; are large, then ¢ < E;, E; and can

be neglected. So (25) can be approximated by:



ln(Wij) ~ ln(WO) — Chucl % + pDij (H - nw) — CnuclEpist (Ei + E] + 2\/ EiEj)

(27),

where D;; is the genetic distance computed across the whole genome and p = M (see
T

Eqg. (11) above for details). The 2cpycippise+/ EiE; and _"M term correspond to trans-

interactions. If € and e are null on average, as predicted by some models (Martin et al. 2007),
(19) and (20) are valid and are not affected by epistatic interactions. If € and e is negative
(antagonistic epistasis), ¢, IS under-estimated whereas H is over-estimated. For positive &
and e (synergistic epistasis), the reverse is expected but depends on the exact values of ¢,
and Cpycippise- Synergistic epistasis among deleterious mutations have already been detected
and seems more common than negative epistasis in eukaryotes (Sanjuan and Elena 2006) but
rather low in “simple” organisms such as fungi and nematodes (Peters and Keightley 2000;
Sanjuan and Elena 2006).

2. Simulations to investigate the effect of the variation of selection coefficients, of
dominance levels or of ¢, among loci

We investigate the robustness of our main results regarding the estimation of pH and c,,,;

using simulations. We consider a species where the haploid and diploid phases have equal

lengths. Based on Eq. (1) in Scott and Rescan (2017), the equilibrium frequency of the

deleterious allele at each locus, k, is:

Qe = —LH (27)

where u represents the mutation rate, oy, is the haploid selection coefficient at locus k, hy, is
the level of dominance of locus k and ¢, is the ratio of fitness effect in diploids over the
fitness effect in haploids.

We simulate an experiment using 30 haploid parents with 500 loci under selection
with four different types of genetic architectures. (i) We assume that oy, h, and c, are
constant across loci with means respectively equal to 0.01, 0.25 and 0.5 (mutation rate is fixed
at 104). (ii) We assume that each oy follows a gamma distribution with mean = 0.01 and
shape=2 (other parameters as in i). (iii) We assume that each h; follows a beta distribution

Sk

with mean = 0.25 and shapel=2 (other parameters as in i). (iv) We assume that ¢, (¢, = —)

Ok

follows a beta distribution with mean = 0.5 and shapel=2 (other parameters as in i).



For each haploid parent and each locus k, we sample an indicator variable X, (0: wild
type allele, 1: deleterious allele) using a Bernoulli distribution with probability q,. We
assume multiplicative effects of mutations such that:

w; = wo [Ti=1(1 — g,)*,
with log(wy)~Gaussian(0,0.001) for the environmental variation around the breeding
value.
We use a diallel (i.e. full factorial) design and compute the fitness of each of the 900 diploid
offspring with haploid parents i and j as:

Wi; = WoIIR=1(1 - CkUk)X’iX’]" (1- hkaUk)X’i(l_X’b”’]‘.(l_X’i) )

with log(W,)~Gaussian(0,0.001) for the environmental variation. We use 10 fitness
replicate measurements for each haploid or diploid genotype.

We estimated mid-parent heterosis as the difference between the average growth rate of a

diploid genotype and the mean of the average growth rates of its two autozygous diploid

1-2hg
2

parents. We computed the predicted H as: H = Y¥_,; ckak( ) According to Eq. (20), H

represent the slope of the linear increase in mid-parent heterosis with pairwise genetic
distance. For each of the 30 haploid parents, we also computed the ratio between its average
fitness as an autozygous diploid over its average fitness as a haploid. The mean of the
distribution of this ratio should be equal to 0.5 (i.e. the mean c,,; used for the simulations).
For both c,,.; and the slope of genetic distance (which is equal to H according to Eqg. (20)),
we compare the estimation of our model with the values expected based on our simulations.
The estimations based on our model were generally robust to variation among loci in
selection coefficient, in dominance level or in the ratio of fitness effects in diploids vs.
haploids (Figure S1 and S2). Variation in selection coefficient had the highest impact on our
model prediction (Figure S1B and S2B). Indeed, very mildly deleterious mutations segregate
at high frequencies compared to mildly deleterious mutations and are more likely to be

homozygous in diploid offspring. Hence, the variation in selection coefficient among loci

1-2hy
2

creates a negative covariance between sk( ) and (X,‘;(l - x)+x](1 —X,i)), as our

model assumed that this covariance was zero, it tends to overestimate the increase in mid-

parent heterosis with genetic distance (Figure S1B).

10



0.04 0.04

» — Fitted H »
‘®» - Predicted H ‘®»
© 0.03 © 003
2 2
) )
e e
— 0.02 - — 0.02
c c
o Q
S 001 1 S o.01
i) i)
= =
0.00 — 0.00
I T T T 1 I T T T 1
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
Pairwise genetic distance Pairwise genetic distance
‘4
0.04 — C 4 0.04 — D
o £ @
[} [0}
© 0.03 © 0.03
2 2
2 2
— 0.02 - — 0.02 -
[ c
Q Q
8 0.01 — g 0.01 —
9 i)
= =
0.00 — 0.00 —
I T T T 1 I T T T 1
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08
Pairwise genetic distance Pairwise genetic distance

Figure S1 Comparison of the predicted and fitted increase in mid-parent heterosis with
pairwise genetic distance (predicted and fitted H) for different genetic architectures.
Simulations of a diallel cross using 30 haploid parents (900 diploid offspring) with 500 loci
under selection with four different types of genetic architectures: (A) assuming that oy, hy
and c,, are constant across loci with means respectively equal to 0.01, 0.25 and 0.5 (mutation
rate is fixed at 10#), (B) assuming that each o, is sampled from a gamma distribution with
mean = 0.01 and shape=2 (other parameters as in A), (C) assuming that each h;, is sampled
from a gamma distribution with mean = 0.25 and shape=2 (other parameters as in A) and (iv)
assuming that ¢, (¢, = Z—’;) follows a gamma distribution with mean = 0.5 and shape=2 (other
parameters as in A). The discrepancy between the fitted H and the prediction based on our
model stems from the segregation of mildly deleterious mutations at relatively high

frequencies that decrease de fitness of diploid offspring.
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Figure S2 Comparison of the fitted and expected c,,, for different genetic architectures.
Simulations of a diallel cross using 30 haploid parents (900 diploid offspring) with 500 loci
under selection with four different types of genetic architectures: (A) assuming that oy, hy
and c,, are constant across loci with means respectively equal to 0.01, 0.25 and 0.5 (mutation
rate is fixed at 10#), (B) assuming that each o, is sampled from a gamma distribution with
mean = 0.01 and shape=2 (other parameters as in A), (C) assuming that each h; is sampled
from a gamma distribution with mean = 0.25 and shape=2 (other parameters as in A) and (iv)

assuming that ¢, (¢, = Z—’;) follows a gamma distribution with mean = 0.5 and shape=2 (other

parameters as in A). The discrepancy between the fitted H and the prediction based on our
model stems from the segregation of mildly deleterious mutations at relatively high

frequencies that decrease de fitness of diploid offspring. A small number of values fell outside
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of the displayed interval due to the effect of environmental variation and are omitted from the

graph for clarity.

3. Quantitative genetic model for the empirical estimation of ¢,,c;, Cnir @and pH

3.1.  Statistical model

For fungi, we consider homokaryons to be equivalent to haploids and heterokaryons to be
equivalent to diploids (see main text). We index genetic effects with Nucl if they are nuclear
and Mit if they are mitochondrial. Our general approach is to decompose nuclear and
mitochondrial genetic effects into effects due to loci that are shared between homokaryons

and heterokaryons (hereafter with a HomHet superscript, e.g. AZ9mHet ) and effects due to

HomOnly

loci specific to homokaryons (hereafter with a HomOnly superscript, e.g. A, i

) or
heterokaryons (hereafter with a HetOnly superscript, €.9. Ayomaernucii)- VW€ do not consider

mitochondrial-nucleus interactions. For homokaryon fitness, we define:

Z; = ln(Wi) = 2o + Agommiti + Anomnucti + €
where z; is the logarithm of the fitness of homokaryon i, z, is the average homokaryon
fitness, Apommizi 1S the homokaryon mitochondrial genetic value, Apomnuci 1S the

homokaryon nuclear genetic value and ¢ is the residual error. We can define:

_ jHomHet HomOnly
AHomMiti - AHomMiti + AHomMiti '

where ABo™HeL is the part of homokaryon mitochondrial genetic value due to loci that also

HomOnly

have a fitness effect in heterokaryons, Ay . it

is the part of homokaryon mitochondrial
genetic value due to loci that do not have any fitness effect in heterokaryons. Similarly, we

have:

_ pHomHet HomOnly
AHomNucli - AHomNucli + AHomNucli’

where AHombet s the part of homokaryon nuclear genetic value due to loci that also have a

HomOnly

fitness effect in heterokaryons, A, . 2

is the part of homokaryon nuclear genetic value

due to loci that do not have any fitness effect in heterokaryons.

Similarly for heterokaryons, we define:
Zij =In(Wy;) = Zo + Apermiti + Anernuciij + €
where Z;; is the logarithm of the fitness of heterokaryons formed with parental homokaryons i

and j, Z, is the average heterokaryon fitness, Apeemiri 1S the heterokaryon mitochondrial

13



genetic value (only the acceptor i is providing the mitochondria), Apernycij IS the

heterokaryon nuclear genetic value and ¢ is the residual error.

We can decompose mitochondrial effects as,

_ aHomHet HetOnly
Agetmiti = Aacemiti T Aucemiti -

where Afo™mHer is the part of heterokaryon mitochondrial genetic value due to loci that also

HetOnly

have a fitness effect in homokaryons, A, i -

is the part of heterokaryon mitochondrial
genetic value due to loci that do not have any fitness effect in homokaryons. Let c,,;; be the
ratio of the fitness effects of mutations in heterokaryons over the fitness effects of the same
HomHet — HomHet

mutations in homokaryons (see Eq. 18 above), such that A} 25 =Cmit Anommiti-

We can also define:

A _ AAchucli+ADonNuclj +1
HetNuclij — 2 AccNuclixDonNuclj»

where Agcenucii aNd Aponnucj @re the acceptor and donor nuclear genetic values respectively
and Tycenuclixponnuctj TEPresents the interaction between acceptor and donor nuclei (see
Simchen and Jinks 1964 for a similar decomposition of heterokaryon genetic value).

Let’s decompose the acceptor and donor nuclear genetic values as follows:

— gHomHet HetOnly — AHomHet HetOnly
Apcenucti = Apcenucti T AAchucliand ADonNuclj - ADonNuclj + ADonNuclj’

where AJoAEL and Afonivice; represent the part of acceptor and donor genetic values due to

HetOnly and AHetOnly

loci that also have fitness effects in homokaryons, whereas A, . .v.,cii DonNuelj

represent

the part of acceptor and donor genetic values due to loci that do not have any fitness effect in
heterokaryons. Let c,, be the ratio of the fitness effects of mutations in heterokaryons over

the fitness effects of the same mutations in homokaryons (see Eq. 8 above), such that

HomHet — HomHet HomHet — HomHet
AAchucli_CnuclAHomNucli and ADonNuclj_CnuClAHomNuclj'

For the acceptor x donor interaction can be decomposed as follows:

— !
IAchuclixDonNuclj - pHDij + IAchuclixDonNuclj!

Tldeleterious

where D;; is the genome-wide genetic distance between homokaryon i and j, p = ~
T

(see Eq. (11) above for details) and Ijccnyciixponnucij 1S the residual interaction after
accounting for genetic distance (e.g. that accounts for potential epistatic effects between the
genome i and j).

We can rewrite homokaryon fitness as:

z; = In(w;) =z, + AZZ%?& + Aﬁﬁﬁ%ﬁf + A’é‘émﬁfﬁu + Af;ﬁ%ﬁ?u e (28)

and heterokaryon fitness as:

14



gHomHet | HomHet pHetOnly |  HetOnly

_ HomHet HetOnly HomNucli™“HomNuclj AccNucli' ““DonNuclj
Zij - ZO + CmitAHomMiti + AAchiti + Cnucl 5 + 5 +

PHD;; + Lycenuctixponnuctj + € (29)
3.2.  Covariance between a heterokaryon and its donor homokaryon

We want to fit a linear model expressing the fitness of a heterokaryon as a function of the
fitness of its donor homokaryon parent:

Zij = Zy + slopepeterokaryon—donor homokaryon Zdonj + &

where zg,,; refers to the phenotype of the homokaryons used as donor for heterokaryon
synthesis, and slopepeterokaryon—donor homokaryon YePresents the slope of the regression of
heterokaryon phenotype on donor homokaryon parent phenotype (Lynch and Walsh 1998,
p538). If the resemblance between an homokaryon donor parent and its heterokaryon
offspring is not environmentally determined:

Cov(Z,Zy0n)
Var(zdon)

Slopeheterokaryon—donor homokaryon —

We assume that we have enough measurement replicates, so that we can ignore environmental

error and have:

AHomHet + AHomHet

_ HomHet HetOnly HomNucli HomNuclj
Zij - ZO + CmitAHomMiti + A + Cnucl

AccMiti 2
HetOnly HetOnly
AAchucli + ADonNuclj HD I,
2 + p ij + AccNuclixDonNuclj

. _ HomHet HomOnly HomHet HomOnly
And: Zdonj =2y + AHgmMeitj + AHomMitj + AHgT‘r;lleLClj + AHomNuClj '
The covariance Cov(Z,z,,,) IS only due to nuclear genes with fitness effects in both

homokaryons and heterokaryons, so that:

HomHet
Cov(Z Y=C AlomNuct AHomHet | _ Cruct 14 (AHomHet
0V\4,Zgon) = LOV| Cpycal 2 ’ HomNucl | — 2 ar(AgomnNuct
Hence, we have:
‘nucl HomHet
I _ %ar(Afomnuct 30
S Opeheterokaryon—donor homokaryon — var(zgon) ( )

The variance, Var(AB9mEer ) represents the part of the variance among homokaryon genetic
values determined by nuclear loci that also have an effect in heterokaryons, whereas
Var(za,,) represents the genetic variance among homokaryon donors that include both

nuclear and mitochondrial genetic effects (variance due to environmental error is factored out,
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as we average values over many measurement replicates). When there is no mitochondrial and

no homokaryon-specific nuclear effects, Var(z4,,) = Var(A&omHer ) and the slope of the

nucl

regression equals CT

3.3.  Covariance between a heterokaryon and its acceptor homokaryon
We want to fit a linear model expressing the fitness of a heterokaryon as a function of the

fitness of its acceptor homokaryon parent:

Zij = ZO + Slopeheterokaryon—acceptor homokaryon Zacci + &,
where z,..; refers to the phenotype of the homokaryons used as acceptor for heterokaryon
synthesis, and slopepeterokaryon—acceptor homokaryon 'ePresents the slope of the regression

of heterokaryon phenotype on donor homokaryon parent phenotype (Lynch and Walsh 1998,
p538). If the resemblance between an homokaryon acceptor parent and its heterokaryon
offspring is not environmentally determined:

Cov(Z,Zgeo)

Slopeheterokaryon—acceptor homokaryon — Var(z )
acc

. _ HomHet HomOnly HomHet HomOnly
We have: Zacci = Zo T AHomMiti + AHomMiti + AHomNucli + AHomNucli :

The covariance Cov(Z, z,..) is due to mitochondrial and nuclear genes with fitness effects in

both homokaryons and heterokaryons, so that:

2

AHomHetl
_ HomHet HomNuc HomHet HomHet
COU(Z, Zacc) = Cov <CmitAHomMit + Crucl ’ AHomMiti + AHomNucl>

Hence, we have:

HomHet, © HomHet
_ cmicVar(Afomid) + 2V ar (A miNel (31)

Slopeheterokaryon—acceptor homokaryon —

Var(Zgce)

The variance, Var(A4omHely and Var(ARomAet ) respectively represent the part of the
variance among homokaryon genetic values determined by mitochondrial and nuclear loci
that also have an effect in heterokaryons, whereas Var(z,..) represents the genetic variance
among acceptor homokaryons that include both nuclear and mitochondrial genetic effects
(variance due to environmental error is factored out, as we average values over many
measurement replicates). When there is no mitochondrial and no homokaryon-specific

nuclear effects, the slope of the regression is the same as that of the regression on donor

Cnucl

homokaryons and equals -

3.4.  Covariance between a heterokaryon and its homokaryon mid-parent
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We want to fit a linear model expressing the fitness of a heterokaryons as a function of the

fitness of its homokaryon mid-parent

Zij = Zy + slope Z—a“izzdo”j + &,

where z,..;and zg,,; refers to the phenotype of the homokaryons used as acceptor and donor
for heterokaryons synthesis, and slope represents the slope of the regression of heterokaryon
phenotype on mid-homokaryon parent phenotype (Lynch and Walsh 1998, p538). In the
absence of maternal effects and if the resemblance between homokaryon parents and their
heterokaryon offspring is not environmentally determined:

Cov (Z, Zacc ‘|2' Zdon)

Var (Zacc "2' Zdon)

slope =

HomHet HomHet HetOnly , ,HetOnly

_ HomHet HetOnly HomNucli+AH0mNuclj AccNucli ™ “"DonNuclj
And Z;; = Zo + CmicAfiommiti + Apcemiei T Cnuct > + > +

!
pHDij + IAchuclixDonNuclj

Zacci + Zdonj
2

HomHet HomOnly HomHet HomOnly HomHet HomoOnly HomHet HomOnly
Zg + AHomMiti + AHomMiti + AHomNucli + AHomNucli + Zg + AHomMitj + AHomMitj + AHomNuclj + AHomNuclj

2
Genetic effects that are homokaryon- or heterokaryon-specific are independent. Hence,

HetOnly HetOnly
C AHetOnly AAchucli + ADonNuclj Zacc + Zdon
AccMiti 2 : 2

=0

HomOnly , ,HomOnly +AHomOnly+AHomOnly
=0
2

HomMiti HomNucli HomMitj HomNuclj
and Cov (Z, L 4

We assume that both the residual interaction between acceptor and donor nuclei
(Licenucixponnuct) @nd the masking effect of deleterious mutations in heterozygotes (pHD)

are independent of the other effects. Hence,

HomHet , ,HomOnly ,HomHet HomOnly HomHet , ,HomOnly , ,HomHet HomOnly
ZotApomMiti tAgommiti TAHomNuclitAgomnucti P20 tAHomMitj Y Anommic; TAHomNuclj t AnomNudl)
Cov (pHD, 1 )=0 and

2

HomoOnl,
HomHet A y+AH0mHet

HomOnly HomHet HomOnly HomHet
Zo +AHomMiti HomMiti HomNucli+A A +A

HomOnly
HomNucli t20tAHomMitj HomMitj TAHomNuclj+ HomNuclj) =0
2

!
Cov <1Achucl><DanNucl'

We also assume that acceptor and donor homokaryons are chosen randomly so that their
phenotype does not covary Cov(Z,.c, Zgon) = 0

Hence,
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slope

HomHet HomNucli HomNuclj HomMiti HomNucli HomMitj HomNuclj
Cov <CmitAH0mMiti + Chua 2

AHomHet +AH0mHet AHomHet _l_AHomHet _l_AHomHet _l_AHomHet
’ 2

%(Var(zacc) + Var(zdon))

HomHet + AHomHet AHomHet + AHomHet
2 2 ’ 2

AHomHejt. AHomNucli HomNuclj “*HomNucli HomNuclj
Cov (CmitAngf\I/Ieigi' HomMm) + Cov Cnuct : :

1
5 Var(z)

HomHet + AHomHet AHomHet + AHomHet
2 2 ’ 2

Cmit HomHet HomHet AHomNucli HomNuclj HomNucli HomNuclj
COU(AHomMitilAHomMiti) + Cnuclcov

1
5 Var(z)

And we have:

HomHet + AHomHet

Crmit HomHet AfomNucti HomNuclj
Tvar(AHomMiti) + Cnuclvar( 2 )

slope = 1
7Var(z)

Cmit HomHet Cnucl HomHet HomHet
2 Var(AHomMiti)-l' 4 Var(AHomNucli-l'AHomNuclj)

1
7 Var (Z)

Comi C
2 Var (o) + 54 Var (Asmue

- 1
5Var(z)
2
HomHet HomHet
cmitVar (Afommic) +CnuctVar (Afomnyuct) (32)
Var(z)

slope =

The variance, Var(ARomiely and Var(AlomAiet Y respectively represent the part of the
variance among homokaryon genetic values determined by mitochondrial and nuclear loci
that also have an effect in heterokaryons, whereas Var(z) represents the genetic variance

among homokaryons.

4, Description of the bivariate mixed model used for the estimation of ¢,,c1, Cmit

and pH

To comply with our statistical model, MGR was log-transformed prior to the analyses. The

genetic and environmental effects were partitioned using linear mixed model analyses with
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Gaussian error distributions. Continuous predictor variables were scaled to mean of zero and
standard deviation of one prior to the analyses (Schielzeth 2010). For the most complex (i.e.
full) model, we used the following bivariate linear mixed model with the same structure of
fixed and random environmental effects for homokaryons and heterokaryons, but with
different structures of random genetic effects for homokaryons:

Z = Xb + ZpomUnom + ZhommitUhommit + ZassayWassay T ZplateUplate + € (33)

and heterokaryons:

z=Xb+ ZyUace + ZionWaon T Zace x donWace x don T ZhetmitUnetmit + ZassayUassay T
ZyiateUplate + € (34)

where z is a vector of logarithm MGR observations, b is a vector of fixed effects, Upom, Uace
and wuy,, are vectors of random homokaryon, acceptor, donor nuclear genetic
effects, uycc x gaon 1S @ Vector of random interactions between acceptor and donor nuclear
genetic effects, Upgmmir aNd Upermic are vectors of random homokaryon and heterokaryon

mitochondrial haplotype genetic effects, u,g5q, and uyq¢ are vectors of random assay and

plate effects, € is a vector of random errors, and X, Znom: Zace» Zdaon» Zace x don 2 hommit:

Zhetmit: Zassay ANd Zy a0 are incidence matrices relating the observations to the fixed and

random effects respectively. Fixed effects in b comprised different intrinsic fitness effects for
heterokaryons and homokaryons (strain type factor), the genetic distance between parental
homokaryons (set at zero for homokaryons, and at the genome-wide genetic distance between
parental homokaryons for heterokaryons, genetic distance covariate), and the senescence
status of the donor (“"senescent™ for heterokaryons descended from senescent donors, vs. "not
senescent” for homokaryons and heterokaryons descended from non-senescent donors, donor
senescent factor). Importantly, we assume that the senescence only affects the mean of donor
effects (e.g. that donor effects are on average lower for senescent than for non-senescent
donor strains), but that the genetic variance among donor effects is the same whether the
donor strain was senescent or not. The random genetic effect w .. x 4on Captures some effects
that are not considered in our simple analytic model (e.g. epistasis among deleterious
mutations). The random genetic effects upgm: Ugee aNd ug4,, Were assumed to follow a

multivariate normal distribution with zero mean vector and variance-covariance matrix:

Uhom (CovNucl1: full
V uacc - .

u covariance of nuclear

don

genetic effects)
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2 Cnucl _2 Cnucl _2
[ Ohom 2 OHomHetNucl 2 OHomHetNucl
|Cnucl 2 2 h 1 2

nuc
| 2 OHomHetNucl Ogcc 4 OHomHetNucl | ® A301
2
lcnucl 0_2 Cnucl 0.2 0-2 J
2 HomHetNucl 4 HomHetNucl don

where A3, represents the haploid nuclear genetic relationship matrix (all-one matrix minus
the matrix of haploid nuclear pairwise sequence divergence) of dimension equal to the
number of isolates (Table S3), ® represents the Kronecker product, 2,,,, 62, and o3,,are

the variances among homokaryon, acceptor and donor nuclear genetic effects respectively,

Cnucl _2

and == 0fiomuetnuct 1S the covariance between homokaryon nuclear genetic effects and

acceptor or donor nuclear genetic effects (i.e. numerator in Eqg. 12). The covariance between

2
acceptor and donor nuclear genetic effects, C”:Cl Ohomnuetnuct: 1S analogous to a covariance

between sex-specific combining abilities in a diallel cross. This covariance actually represents
the numerator of the slope of the regression of heterokaryon donor genetic effects over
heterokaryon acceptor genetic effects. The random genetic effect uppmmir aNd WUpermic WeEre
assumed to follow a multivariate normal distribution with zero mean vector and variance-

covariance matrix:

v [l:;homm-it] _ l o,fo,;mit cmitéf,fomhet v (CovMitl: full covariance
hetmit CmitOhomhet Ohetmit of mitochondrial genetic
effects)

where A7, represents the mitochondrial genetic relationship matrix (all-one matrix minus the
matrix of mitochondrial pairwise sequence divergence) of dimension equal to the number of
mitochondrial haplotypes, o7 ,mic and of.mi are the variances of homokaryon and
heterokaryons mitochondrial genetic effects respectively, and c,,;:07mne: iS the covariance
between homokaryon and heterokaryon mitochondrial genetic effects (i.e. part of the
numerator in Eqg. 13). The assay effect accounts for environmental variation among different
assays and plate effect accounts for environmental variation between different plates within
the same assay. Random acceptor x donor nuclear genetic effects in Uy, x gon, assay effects

IN Ugsqy, and plate effects in w,;q. Were each assumed to be independently and normally

distributed with a mean of zero and variance of 67.c x gon: Tassay and oZace respectively

(V[uaccxdon] = Oﬁccxdon I35, V[uassay] = O_gssay I53;, and V[uplate] = 5late 11395)’
where 1 is the identity matrix. A prerequisite for the estimation of c,,; and c,,;; is that the

covariances between nuclear genetic effects or between mitochondrial genetic effects are not
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null. To test for this, we fit additional models with reduced variance-covariance matrices for
both nuclear or mitochondrial genetic effects. For nuclear genetic effects, we fit two
additional types of models: (1) In “no covariance with homokaryon nuclear genetic effects”
type of models, we only fit the covariance between acceptor and donor genetic effects
(62.ca0n), SO that there is no covariance between homokaryon and either acceptor or donor

nuclear genetic effects:

2 . .
Uhom Ohom 0 0 (CovNucl2: covariance
2 2
V{%acc | = 0 Ogcc  Oaccdon | ® Aso- between acceptor and donor
u 2 2
don 0 Ogccdon Odon

nuclear genetic effects only)

(2) In the “no covariance of nuclear genetic effects”, all covariances between homokaryon,

acceptor and donor genetic effects are set to zero:

Upom ofom O 0 (CovNucl3: no covariance
ViMace |=| 0 0gec 0 |®As0. of nuclear genetic effects)
Ugon 0 0 oﬁon

For mitochondrial genetic effects, we fit one additional type of model where the covariation
between homokaryon and heterokaryon mitochondrial genetic effects is set to zero:

u i O mmi 0 CovMit2: no covariance of
14 hommlt] — l hommit l®A’11 (

. 2 . . .
Upetmit 0 Ohetmit mitochondrial genetic

effects)
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