
File S1 - Constraints of Minor Allele Frequency on FST

Assuming all populations have the same size, we define pi as the observed frequency of the minor
allele in population i, and p = ∑n

i=1 pi
n as the minor allele frequency over all n populations. To simplify

calculations, here we analyzed the constraints of minor allele frequency on FST using the expected
value of FST, instead of the Weir and Cockerham (1984) FST estimator used in the main text. The
expected value of FST is defined by

FST =
HT − HS

HT
, (1)

where HT is the heterozygosity in the total population and HS is the average heterozygosity within
subpopulations, defined by

HT = 2p(1− p) HS =

n
∑

i=1
2pi(1− pi)

n
. (2)

Maximum FST for a given p is achieved when HS is minimal. This happens when all occurrences
of the minor allele are concentrated in as few populations as possible and only one population is
polymorphic at that site (Alcala and Rosenberg 2017), i.e. when bpnc populations are fixed for the
minor allele, and the remainder of minor alleles are all in the same population, with frequency
p∗ = pn− bpnc. (The notation b c represents the integer part of the number pn).

All populations that are fixed for either the minor or major allele will not contribute to HS, since
either pi or 1− pi will be zero. So the HS formula in the scenario of maximum FST can be simplified
to

HSmaxFST
=

2p∗(1− p∗)
n

. (3)

For example, with n = 10 populations and MAF of p = 0.15, maximum FST will be achieved when
b1.5c = 1 population is fixed for the minor allele, 1 population has MAF = p∗ = 1.5− 1 = 0.5, and
the remainder 8 populations are fixed for the major allele. In this case, maximum FST is 0.8.

To illustrate this constraint imposed by MAF on FST, we simulated the neutral evolution of SNPs
in 10 populations, with virtually no migration among them, allowing SNPs to achieve maximum
differentiation among populations. Simulations were performed using the sim.genot function of the
hierfstat R package (Goudet 2005). We simulated the neutral evolution of 10,000 bi-allelic loci (SNPs)
in 10 populations, each with population size 1000, migration rate of m = 10−5 and mutation rate of
µ = 10−8, and we used sample sizes of 50, 100 or 1000 individuals. Results were independent of
sample size. The low migration rate allowed SNPs to achieve maximum FST values possible given
their MAF. Figure S1 shows the FST of 10,000 simulated SNPs as a function of their MAFs, as well
as the maximum FST values estimated by replacing the observed values by the expected one in
Equations 1-3.

Figure S1 shows that, when all subpopulations are the same size (in the case of Figure S1, n = 10),
FST only achieves 1 when MAF is exactly m ∈ {1/n, 2/n, ..., 1/2}. This is because FST can only achieve
1 when HS is zero, and HS can only be exactly zero when all populations are fixed for either the minor
or major allele. Maximum values of FST increase linearly from zero to one as MAF increases from
zero to 1/n. When MAF is between the values of m, maximum FST is less than 1, which generates the
wavy pattern seen in Figure S1.
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Figure S1 Maximum FST as a function of MAF for n = 10 populations. Black line shows maximum
FST as a function of MAF, calculated using Equations 1-3. Gray points are simulations of biallelic
SNPs evolving neutrally in 10 populations of the same size, with low migration among them,
which allows them to achieve maximum FST.
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