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1. Time-to-event traits analyzed

We use time to mild DR and time to persistent microalouminuria, for DR and DN outcomes
respectively, as previously defined in the motivating GWAS of HbAlc (Paterson et al. 2010) and
summarized in Table S1-1.

Table S1-1 Time-to-event traits analyzed in the DCCT Genetics Study

Time-to-
event Name Outcome definition
outcome
DR Time to mild DR Time from DCCT baseline to mild non-proliferative
diabetic retinopathy (EDTRS step 4, patient level 35/<35)
DN Time to persistent Time from DCCT baseline to the first of two consecutive
microalbuminuria visits with Albumin Excretion Rate >30 mg/day

Out of the 667 DCCT individuals, we analyze N=516 subjects with genotype data, without mild
retinopathy at DCCT baseline (or prior) or without DN event at DCCT baseline. By the time of
the DCCT close-out visit, 297 (57.6%) experienced a DR event, 61 (11.8%) a DN event, including
47 subjects (9.1%) that experienced both events.

2. Selection of the 307 candidate SNPs from the literature

We identified 322 independent SNPs (r?<0.8, MAF > 5% in European ancestry individuals)
associated with HbAlc, SBP, DR and/or DN outcomes as reported in the literature (Paterson et al.
2010; Grassi et al. 2011; Sandholm et al. 2012; Hosseini et al. 2015; Wheeler et al. 2017;
Evangelou et al. 2018; Pollack et al. 2019). For HbAlc, DR or DN we selected SNPs reported at
the suggestive significance level of P*=10° by GWAS in T1D individuals or SNP associations
reported by GWAS conducted in T2D individuals or general populations and confirmed in T1D
individuals of European ancestry at the nominal significance level (Paterson et al. 2010; Grassi et
al. 2011; Sandholm et al. 2012; Hosseini et al. 2015; Wheeler et al. 2017; Evangelou et al. 2018;
Pollack et al. 2019). For the SBP SNP list, since large-scale GWAS results of SBP in individuals
with diabetes were lacking at the time of our analyses, we selected SNPs reported in the largest
meta-analysis conducted in the general population of European ancestry at the conventional
genome-wide significance level P*=5x1072. In total, we analyzed in DCCT 307 biallelic SNPs with
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imputation quality score R2 > 0.50 and MAF > 5%, and after pruning on linkage disequilibrium
(r?< 0.8) using LDIlink (Machiela and Chanock 2015) in 1000 Genomes phase 3 European-ancestry
population (See Eile S4 for a full list of the SNPs and their marginal association results with the
discovery trait and with the other investigated traits in N = 516 DCCT individual).

3. Analysis of the DCCT data

We fit the joint model (JM) for each SNP, one at a time, including baseline covariates (age at
diagnosis, T1D duration, cohort, sex, and year of entry in the DCCT study). For the covariate year
of entry in DCCT, we group the patients into four consecutive strata with homogeneous number
of individuals (i.e. 1983-1984, 1985-1986, 1987, using 1988-1989 as the reference category). To
account for non-linear trends observed in HbAlc measures, we include an indicator variable in the
model that captures short-term effects between DCCT entry and 3-month visit. In Stage 1 of JM,
bivariate longitudinal mixed-effects models for HbAlc and SBP are fitted using all available
measures at quarterly visits from DCCT baseline to the close-out visit; HbAlc and SBP trajectories
are fitted for each individual. In Stage 2 of JM, trajectory values interpolated to the start time of
each risk interval are then used as time-varying covariates in the Cox PH frailty model. Time-to-
event sub-models are fitted using annual records of DR and DN events. Because the DR and DN
outcomes were assessed with different frequency of visits in DCCT (semi-annually for DR and
annually for DN), we assign each DR event to the one-year interval visit that include the observed
time-to-event. We use B =500 bootstraps of DCCT individuals to compute empirical variance-

covariance matrices for parameters estimated by the joint model.

4. Association structures for HbAlc on T1DC traits

Given established cumulative effects of HbAlc on T1DC traits (Lind et al. 1995; Lind et al. 2010),
we compare joint model results obtained with contemporaneous HbAlc value to joint model
results obtained using time-weighted cumulative and updated cumulative mean HbA1c effects on
T1DC (Lind et al. 1995; Lind et al. 2010). Under each cumulative association profile, the time-to-
event sub-model in Stage 2 of JM is fitted by substituting the fitted trajectory of the HbAlc by a
summary function of the prior fitted values from DCCT baseline up to the beginning of each risk
interval (Table S4-1). While the updated mean association structure assumes an equal weighting
for all fitted HbAlc values at prior visits from baseline, the time-weighted cumulative HbAlc

3/31



effect association structure assumes different weights for each visit. Here, we use a time-weighted

formulation that considers all HbAlc values from DCCT baseline up to 5 years prior to the start

of each risk interval following previous DCCT data analysis (Lind et al. 2010). We extracted

weights from (Lind et al. 2010), as presented in Eig. S4-1, and recalibrated them for each risk

interval such that the sum of the weights is equal to 1 (Table S4-1). Joint model results fitted with

each alternative association structure for HbAlc on T1DC traits are presented in Table S4-2. In

the main paper, we present results under the time-weighted cumulative association structure which

exhibits the stronger prior association with T1IDC and in the DCCT individuals analyzed here
(Table_S4-2); but we obtain similar results for tests of SNP effects using the two alternative

association structures (Fig. S4-2).

Table S4-1. Three alternative association structures used to account for time-dependent
HbA1c effects on T1DC traits in DCCT

Parametrization

Time-dependent association structure in the two-stage approach

Contemporaneous | £, , (v1,(t:;)) = y1.(ti))
(current value)
Updated fue O (t)) = < s vt (tis), withs < j
cumulative mean
Time-weighted (J
cumulative Z vyt (tijs) if tij <5
fur (7 (6)) = { 55
zvkﬁl(ti.j—s) iftij=5
\s=1

Here, we use S=5 to account for the fitted HbAlc values up to 5 years
prior to the current time point t;

2010), see Fig. S4-1.

j» With weights v, based on (Lind et al.
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Fig. S4-1. Relative
contribution of past HbAlc
measures to the risk of mild
retinopathy at current time
point, based on (Lind et al.
2010). The X axis represents
the time (in year) since the
current HbAlc measurement.

Relative Contribution
| | | |

10 12 14 16 1.8 20 22 24

T
0 1 2 3 4 5

Time since last HbA1c measurement

Table S4-2. Results from the joint model fitted in DCCT subjects with alternative association
structures for HbAlc and without genetic variable Each sub-model is adjusted for sex, age at
diagnosis, T1D duration and year of entry in DCCT. Year of entry in DCCT is treated in the models
as indicator variables for each category 1983-1984 (N = 86), 1985-1986 (N = 131),1987 (N = 127)
and 1988-1989 (N = 171). The category 1988-1989 was used as reference category. tOtlhba_1 is
the indicator variable used to account for the non-linear trend of HbA1c between the baseline and
the 3 month-visit.

(see table on next page)
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Longitudinal sub-model
HbAlc (I1=1) SBP (1=2)
Effect P Effect P
Intercept 9.51 111.28
tOtlhba_1 -0.24 7.3E-06
visits (years) 0.04 5.8E-03 0.21 7.5E-04
T1D duration at baseline (years) | -0.05 3.9E-02 0.21 0.14
Age at baseline (years) -0.02 3.3E-02 0.15 2.2E-03
Cohort -0.16 0.32 1.12 0.27
Gender (Female) 0.11 0.35 -6.39  4.4E-22
Year of entry in DCCT
1983-1984 | 0.22 0.18 0.06 0.95
1985-1986 | -0.02 0.86 -0.3 0.73
1987-1988 | 0.18 0.27 -1.05 0.2
Residual variances 0.72 69.43

Time-to-event sub-model

Association structures of HbAlc with Time-to-DR (k=1)

Updated Time-weighted
Contemporaneous . :
cumulative mean cumulative
log HR P log HR P log HR P
HbAlc Trajectory 044 10E-15| 052 28E-18 | 053 1.3E-18
T1D duration at baseline (years) | 0.19 3.8E-10 | 0.20 6.6E-10 | 0.20 7.7E-10
Age at baseline (years) 0.02 0.11 0.02 41E-02 | 0.02 3.8E-02
Cohort 110 20E-07| 115 7.1E-08 | 1.16 4.0E-08
Sex (Female) -0.37 12E-02 | -040 8.4E-03 | -0.39 9.2E-03
Year of entry in DCCT
1983-1984 | -0.23 0.31 -0.29 0.23 -0.30 0.21
1985-1986 | -0.14 0.50 -0.20 0.35 -0.21 0.32
1987-1988 | -0.61 49E-03 | -0.67 2.4E-03 | -0.69 1.9E-03
Association structures of HbAlc with Time-to-DN (k=2)
Updated Time-weighted
Contemporaneous . ?
cumulative mean cumulative
log HR P log HR P log HR P
HbAlc Trajectory 046 16E-05| 055 1.2E-06 | 054 8.2E-07
SBP Trajectory 0.07 1.0E-04| 007 10E-04 | 0.07 1.0E-04
T1D duration at baseline (years) | 0.07 0.20 0.07 0.17 0.08 0.16
Age at baseline (years) -0.05 2.6E-02 | -0.05 0.05 -0.05 4.8E-02
Cohort 0.22 0.59 0.25 0.54 0.25 0.55
Sex (Female) -0.20 0.54 -0.23 0.47 -0.23 0.47
Year of entry in DCCT
1983-1984 | 0.54 0.25 0.51 0.27 0.50 0.28
1985-1986 | 0.04 0.94 -0.01 0.99 -0.02 0.97
1987-1988 | 0.01 0.98 -0.05 0.92 -0.06 0.91
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Fig. S4-2. Classification of direct and/or indirect SNP association based on the joint model fitted for each of the 307 candidate SNPs tested in
N = 516 DCCT subjects using the contemporaneous association structure and each of the two alternative cumulative association structures
from Table S4-1 (updated cumulative mean and time-weighted cumulative) for HbAlc effects on time-to-T1DC traits. Scatter plots represent
the P-values (-logio) for tests of B, (X axis) and y,4 (Y axis) for HbA1c/DR, HbA1c/DN and SBP/DN trait pairs respectively. Significance levels
P* =1.7x10*and P* = 0.05 are indicated by red and dark grey lines.
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5. Joint model diagnostics and sensitivity analyses to modeling assumptions

Because the joint model integrates longitudinal and time-to-event sub-models, model
misspecification can occur in multiple ways and can lead to invalid classification of direct and/or
indirect genetic associations. For example, (Arisido et al. 2019) show by simulation studies that
misspecification of the shape of the longitudinal trajectory, or the hazard function, can severely
bias the QT effect estimate on the time-to-event trait in a shared-random effect joint model;
however misspecification of the normal assumption for the random effects appears to have a
negligible effect, particularly as the study sample size increases.

As described by (Rizopoulos 2012), joint model diagnostics can be based on standard approaches
for residual analyses from the longitudinal and the time-to-event sub-models. Here, we apply
diagnostics to the joint model of HbAlc, SBP, DR and DN fitted in DCCT individuals with the
Two-Stage approach (see section 3 for details). To illustrate, we present diagnostic analyses for
rs1358030 and for the time-weighted cumulative association structure for HoAlc effects on both
T1DC traits (we obtained similar conclusions under the two alternative association structures
described in Table S4-1). We summarize the conclusions from the residual analysis applied to the
longitudinal sub-model and time-to-event components of the joint model as well as from sensitivity

analyses of the classification results to model assumptions in Table S5-1.
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Table S5-1. Summary of the joint model diagnostic results in DCCT

Assumptions

Diagnosis tools

Results

Joint model diagnosis results in DCCT?

| Main conclusions

Longitudinal sub-model for both HbAlc and SBP QTs: Bivaria

te longitudinal mixed-effects models for HbAlc and SBP

(Panels B & D)

Homoscedasticity Plot of the standardized subject-specific | Fig. S5-1 No deviation from the homoscedasticity assumption for
residuals (conditional residuals) of each | (Panels A & C) both QTs.
QT versus the corresponding subject-
specific fitted QT values

Normality Q-Q plot of the conditional residuals Fig. S5-1 No systematic deviation from the expected normal

distribution for both QTs, except for the subjects in the
tails of the Q-Q plot for HbAlc.

versus the visit times for each QT

(Panels B & D)

Fig. S5-2 Assessment of conditional residuals for a random
selection of subjects showing deviation from normality
assumption on the Q-Q plot could be explained by poor
model fit at some visits due to high within-subject
HbALc variability.

Specified mean Scatter plot of the standardized marginal | Fig. S5-3 Null horizontal trends observed for the loess curve of the
structures for each QT | residuals (population averaged) against | (Panels A & C) scatterplot for each QT which does not indicate
the subject-specific fitted QT values. misspecification of the mean structures in the

longitudinal sub-model.
Linearity Scatter plot of the marginal residuals | Fig. S5-3 No evidence for non-linear time effects on each QT

trajectory.

Time-to-event sub-model for DR and DNs: Cox PH frailty time-to-event sub-model

the null slope of the time-dependent
covariate effect on the time-to-event

Functional form of the | Scatter plots of the martingale residuals | Fig. S5-4 No systematic deviation of the loess curves of each fitted

longitudinal QT from the Cox PH frailty model for both QT trait against the martingale residuals from the

trajectory effect on each | T1DC traits fitted alternatively without horizontal line expected under the linear assumption

T1DC trait the QT being assessed assumed for each QT effect on each T1DC trait.

Frailty distribution Sensitivity analysis to alternative Table S5-2 No change of the conclusions when the Gaussian
specification of frailty distributions distribution is assumed for the frailty term (instead of the

Gamma distribution) in the Cox PH frailty sub-model.
PH PH test based on the formal score test for | Table S5-3 No indication for global deviation from the PH

assumption, but four covariates show evidence of
significant time-dependent effect on time-to-DR at the
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outcome as described by (Grambsch and
Therneau 1994)

Plot of the scaled Schoenfeld residuals
versus the time for each covariate to
inspect visually time-dependent
covariate effects on the time-to-event
trait. Variation of the log-HR with time
is consistent with violation of the PH
assumption.

Introduction of the covariate failing the
PH assumption test as stratification
factor in the baseline hazard function of
the time-to-event model

Fig. S5-5

Table S5-3
Table S5-4
Table S5-5

nominal significance level (P<0.05) with a slightly larger
discrepancy for the cohort covariate.

Out of the four covariates showing nominal evidence for
deviation from the PH assumption, the cohort covariate
shows more pronounced variation of log-HR, particularly
soon after entry into the trial. This suggests that the two
cohorts are likely most different at study entry.

No indication for deviation from the PH assumption for
any variable when the cohort covariate is introduced as a
stratification factor in the baseline hazard of the Cox PH
frailty time-to-event sub-model. No change in the
classification results for rs1358030 and rs10810632
either when the cohort is used as a stratification factor in
the baseline hazard function or adjusted as a covariate in
the Cox PH frailty model.

For the joint model fitted in DCCT with the two-stage approach (see section 3 for details) for rs1358030 and time-weighted cumulative effects of

HbA1c on both time-to-T1DC outcomes.
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Fig. S5-1. Diagnostic analysis for the homoscedasticity and normality assumptions based on the standardized subject-specific residuals
extracted for HbAlc (panels A-B) and SBP (panels C-D) from the bivariate mixed model fitted for HbAlc and SBP fitted at Stage2. Panels A
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Fig. S5-2. Examples of observed and fitted HbAlc trajectories values for eight individuals randomly chosen from the analyzed DCCT
individuals. Examples 1-4 are for individuals selected among those exhibiting a standardized subject-specific residual larger than 4 (in absolute value)
in the Stage 1 longitudinal sub-model for at least one visit; values with standardized subject-specific residual larger than 4 (in absolute value) are shown
in red. Examples 5-8 show in comparison HbAlc values for individuals selected among those that do not exhibit a large, standardized subject-specific
residual (absolute value <2).
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Fig. S5-3. Diagnostic analysis based on the marginal residuals (population averaged) extracted for HbAlc (panels A-B) and SBP (panels C-D)
from the bivariate mixed model fitted for HbAlc and SBP at Stage2. Panels A and C correspond to the scatterplots of the marginal residuals for
each QT versus the subject-specific fitted QT values; Panels B and D represent the scatterplots of the marginal residuals against the visit times. The
loess curves of the scatterplots on panels A-D are shown in red. These plots do not indicate any evidence of misspecification of the design matrix for
the fixed effects for both QTs (A, C); and no deviation for the linear trajectory for each QT in time (B, D).

13/31



B. Cc.

0
1.0
0

- el .’Q s ‘E Q‘:';-:"l i 7 . oo, ge '.‘%b:‘:' A0S . = . E.. .%o-‘o » . . .
.. . . 5 .
': _1_9._..5'%- A = -
- '. .

06

Martingale Residuals
0.0
Martingale Residuals
04
Martingale Residuals
0.4
1

02
1
0.

=02

] 8 10 12 6 8 10 12 100 110 120 130 140 150
Fitted cumulative HbA1c Fitted cumulative HbA1c Fitted SBP

D. E. F.

= 'Il- ! w ' ) .It. ; ] . "'ci',“@lgx:'." o =] . '.,-?.‘-f-; > .

0
1.0
0

-
-"
.
.
08
|
08

Martingale Residuals
04 08

|
Martingale Residuals

Martingale Residuals

0.2

0.0
1

-0z
1

=-0.2

[ 8 10 12 [ 8 10 12 100 110 120 130 140 150

Fitted cumulative HbA1c Fitted cumulative HbA1c Fitted SBP

Fig. S5-4. Functional form of QT effects on each T1DC trait. Panels A-C show the martingale results from the Stage 2 time-to-event sub-model
when each longitudinal QT is excluded from the model as suggested by (Therneau and Grambsch 2000) to display form of the QT effect on the time-
to-event traits. Panels D-F, show the martingale results from the Stage 2 time-to-event sub-model when the QTs are included in the Cox frailty models
as used by (Rizopoulos 2012) to visually inspect the functional form of the QT on the time-to-event is correct. Panels A and D show the martingale
residuals for the DR outcome and Panels B, C, E and F show the martingale residuals for the DN outcome.
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Cox PH frailty model with | Cox PH frailty model with
Gamma distributed frailty | Gaussian distributed frailty
(as used in the paper) (for comparisons)
Log HR P-value Log HR P-value
Time-to-DR
SNP (rs1358030) -0.2 7.0E-02 -0.19 8.2E-02
HbAlc trajectory
(Time-weighted cumulative) 0.55 1.0E-18 0.54 8.3E-19
Time-to-DN
SNP (rs1358030) | -0.31 1.6E-01 -0.30 1.7E-01
HbAlc trajectory
(Time-weighted cumulative) | 0.58 2.6E-07 0.58 2.9E-07
SBP trajectory
(contemporaneous) 0.07 1.2E-04 0.07 1.3E-04

Table S5-2. Comparisons of the results for rs1358030 and QT effects on each T1DC trait
obtained from the Cox PH frailty time-to-event sub-model fitted at Stage 2 assuming either
a Gamma or a Gaussian distribution for the frailty term. For each coefficient, the P-values are
obtained using a 1df Wald test based on the variances estimated by 500 bootstraps. The results for
the adjusting baseline covariates were similar between the two models but are not shown here to
simplify the table.
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Cox frailty model as Cox frailty model with
presented in the paper baseline hazard
(adjusted for the cohort | stratified on the cohort
covariate) variable
GLOBAL 9.9E-01 8.5E-01
Time-to-DR

SNP (rs1358030) 2.4E-02 6.9E-02

HbA1c trajectory
(Time-weighted cumulative) 9-9E-03 2.18-01
T1D duration at baseline (years) 3.7E-02 5.1E-01
Age at baseline (years) 2.5E-01 2.3E-01
Sex (Female) 3.7E-01 7.6E-01
Year of entry in DCCT (1983-1984) 5.8E-01 4.9E-01
Year of entry in DCCT (1985-1986) 7.3E-01 7.1E01
Year of entry in DCCT (1987-1988) 4.7E-01 5.0E-01

Cohort 7.2E-03 NA
Time-to-DN

SNP (rs1358030) 2.0E-01 1.7E-01

HbA1c trajectory
(Time-weighted cumulative) 2:3£-01 1.6E-01
SBP trajectory (Contemporaneous) 8.4E-01 8.9E-01
T1D duration at baseline (years) 8.7E-01 4.2E-01
Age at baseline (years) 7.5E-01 8.9E-01
Sex (Female) 7.5E-01 6.2E-01
Year of entry in DCCT (1983-1984) 2.7E-01 2.2E-01
Year of entry in DCCT (1985-1986) 3.1E-01 2.7E-01
Year of entry in DCCT (1987-1988) 9.6E-01 9.7E-01

Cohort 4.8E-01

Table S5-3. P-values for assessment of the PH assumption both globally and for each
covariate entered in the Cox PH frailty time-to-event sub-model fitted at Stage 2. The PH
assumption was tested using cox.zph() from the R “survival” package. This function returns the
results of a formal score test for the null slope of the time-dependent covariate effect on the time-
to-event outcome as described in (Grambsch and Therneau 1994). The frailty term is treated as a
fixed offset in the model and is not tested for PH assumption.
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Fig. S5-5. Schoenfeld residuals for the time-dependent covariate effects on time-to-DR for
each of the four covariates that violates the PH assumption at the nominal significance level
(P <0.05in Table S5-2) in the Cox PH frailty time-to-event sub-model fitted at Stage 2. Panels
A. cohort, B. rs1358030, C. Time-weighted cumulative effects of HbAlc, D. T1D duration (years).
The blue dashed lines show the covariate effect estimated by the Cox PH frailty time-to-event sub-
model. These plots were produced using the output from cox.zph() from the R “survival” package.
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Cox frailty model as
presented in the paper
(including cohort as a

Stratified Cox frailty
model for the cohort

. covariate
covariate)

Log HR ‘ P-value Log HR | P-value
Time-to-DR

SNP (rs1358030) -0.20 7.0E-02 -0.14 1.6E-01

HbA1c trajectory (Time-weighted cumulative) 0.55 1.0E-18 0.47 1.0E-15
Time-to-DN

SNP (rs1358030) -0.31 1.6E-01 -0.29 1.7E-01

HbA1c trajectory (Time-weighted cumulative) 0.58 2.6E-07 0.55 4.4E-07

SBP trajectory (Contemporaneous) 0.07 1.2E-04 0.07 4.3E-05

Table S5-4. Results from sensitivity analysis for rs1358030 and QT effects on each T1DC
trait using the Cox PH frailty time-to-event sub-model fitted at Stage2 and when the cohort
variable introduced as a stratification factor in the baseline hazard. For each coefficient, P-
values are obtained using a 1df Wald test based on the variances estimated by 500 bootstraps of
individuals. The adjusting covariates are not presented but were added in the models.

Cox frailty model as
presented in the paper
(including cohort as a

covariate)

LogHR | P-value

Stratified Cox frailty
model for the cohort
covariate

Log HR | P-value

Time-to-DR
SNP (rs10810632) 0.3 1.4E-01 0.28 1.4E-01
HbA1c trajectory (Time-weighted cumulative) 0.48 5.0E-16 0.43 8.2E-15
Time-to-DN
SNP (rs10810632) 0.5 2.1E-01 0.47 2.3E-01
HbALc trajectory (Time-weighted cumulative) 0.5 6.0E-06 0.48 9.2E-06
SBP trajectory (Contemporaneous) 0.07 6.5E-05 0.07 2.2E-05

Table S5-5. Results from sensitivity analysis for rs10810632 and QT effects on each T1DC
trait using the Cox PH frailty time-to-event sub-model fitted at Stage2 and when the cohort
variable introduced as a stratification factor in the baseline hazard. For each coefficient, the
P-values are obtained using a 1df Wald test based on the variances estimated by 500 bootstraps
of individuals. The adjusting covariates are not presented but were added in the models.
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6. Sample size/power analyses based on parametric resampling

We assessed the dependence on study sample size of the classification results for associations of
rs1358030 and rs10810632 detected in DCCT, using five datasets with increasing sample size
drawn from DCCT individuals using a parametric resampling approach under a specified
alternative hypothesis (which maintains the relationships between the SNP, the traits and the
covariates as observed in DCCT). Parametric resampling approaches have been used for example
in clinical trials to estimate sample size requirements (Walters and Campbell 2005) or assess
statistical power (Kleinman and Huang 2017) under a specified alternative hypothesis, and in
genetic association studies to construct an empirical null distribution for complex joint gene-gene
interaction testing (Chen et al. 2007) or for gene-set association testing of gene-environment

interactions (Coombes and Biernacka 2018).

Briefly, we resample the individual covariate vectors (including the SNPs, longitudinal QTs and
baseline covariates) observed in DCCT to generate five datasets with sample sizes up to 5 times
the DCCT dataset (from N=516 to N=2580 individuals), and we simulate the time-to-T1DC traits

based on the joint model parameters estimated in DCCT (parametric part).

Resampled datasets with increasing sample size for each SNP

1. Resampling of the longitudinal data: We combine successively five duplicates of N=516
DCCT individuals of observed longitudinal and baseline covariates (including the SNP),
that is: Data 1: 1 duplicate, Data 2: 2 duplicates, Data 3: 3 duplicates, Data 4: 4 duplicates,
Data 5: 5 duplicates.

2. Simulation of the time-to-event traits for Data 1 to Data 5:

a. Simulation of five data replicates of N=516 individuals of time-to-T1DC traits
(DR, DN). For each replicate and each DCCT individual, we generate each k™"
time-to-event trait similarly as presented in Fig. 4 and described in Step3 (File S2,
section 3):

i. We generate the uncensored T, for each k™ time-to-event outcome (k=1
for DR and k=2 for DN) by calculating the inverse of the cumulative hazard
function for each time-to-event trait k with parameters set to the estimated
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values from the joint model time-to-event sub-model fitted in DCCT (see
section 3 for details about the joint model fitted in DCCT). Here, the
unexplained dependency between the simulated time-to-T1DC traits is
induced by the fitted subject-specific frailty term.

. To generate event rates as observed in DCCT (ie 57.6% DR events and

11.8% DN events), constant across the five replicates, we define for each
k™ time-to-event trait the censoring time C;, such that P(Ti’f1 < Ci,l) =
0.576 for DR and P(T;, < C;,) = 0.118 for DN. We attribute an event
(0;x = 1) to all the subjects with T}, < C; or a censored event to those

with Tifk > Ci,k'

b. We combine successively the individuals from the 5 data replicates of time-to-

event traits such that:

Data 1, N=516 (replicate 1 of time-to-T1DC traits)

Data 2, N=1032 (replicates 1 and 2 of time-to-T1DC traits combined)
Data 3, N=1548 (replicates 1 to 3 of time-to-T1DC traits combined)
Data 4, N=2064 (replicates 1 to 4 of time-to-T1DC traits combined)

Data 5, N=2580 (replicates 1 to 5 of time-to-T1DC traits combined)

3. We treat the duplicated individuals in each dataset as independent individuals.

Similarly, to assess the impact of the Winner’s curse bias on the classification results for rs1358030
and rs10810632, we generate five additional datasets (named as Data 6: N=515, Data 7: N=1032,
Data 8: N=1548, Data 9: N=2064 and Data 10: N=2580) under the above parametric resampling

approach, but we replace the observed genotypes for each SNP in (1) by simulated genotypes with

a specified SNP effect on HbAlc (ﬁ;VTfl) equal to 50% of its joint model estimate in DCCT (ﬁ;"?l =

O.Sﬁzl) using the procedure described in File 2 (section 3) for the simulation of the SNPs with

indirect effects.
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Analysis of each resampled dataset

We apply to each dataset (Datal to Datal0) the same joint model as described in the paper for joint
analysis of HbAlc, SBP, DR and DN for each SNP (see Section 3, for details), with the cumulative
time-weighted association structure for HbAlc effects on T1DC traits. We obtain empirical
estimates of the joint variance-covariance matrices using B=500 bootstraps. We classify each SNP
as direct and/or indirect association using the same level of significance as used in the manuscript
for the classification of SNPs in DCCT (that is P*=1.7x10*). For each SNP and each dataset, we
compute 95% and 99% confidence intervals of the SNP effects estimate and present joint model
results, as well as the dependence of SNP classification results on increasing sample size. Joint
model results, confidence intervals of the SNP effect estimates as well as classification results in
each dataset are shown, respectively, in Table S6-1 and Fig. S6-1 to 6-3 for rs10810632
(MAF=7%) and in Table S6-2, Fig. S6-4 to 6-5 for rs1358030 (MAF=36%).
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Table S6-1. Dependence of joint model results for rs10810632 (MAF=7%) on increasing sample size, investigated by parametric resampling
under a specified alternative hypothesis, and adjusted for winner’s curse bias. We generated Data 1 to Data 10 with increasing sample size, based
on the parametric resampling approach applied to DCCT individuals. For Data 6 to Data 10, we specified the effect size for rs10810632 on HbAlc
equal to 50% of its estimate in DCCT. Only the SNP effects on HbAlc and T1DC traits and the effects of HbAlc on the T1DC traits are presented

here.
Sample size analyses Sample size analyses with a reduced SNP effect on HbAlc
Traits | Parameters DCCT N=516 | pata 1 Data 2 Data 3 Data 4 Data 5 Data6 | Data7 Data 8 Data 9 Data 10
N=516 N=1032 N=1548 N=2064 N=2580 N=516 N=1032 N=1548 N=2064 N=2580
HbALC Effect! 0.93 0.94 0.94 0.94 0.94 0.95 0.51 0.51 0.52 0.52 0.52
(I1=1) By sd2 0.17 0.17 0.12 0.10 0.08 0.07 0.15 0.11 0.08 0.07 0.07
P-valued® | 2.8E-08 2.5E-08 3.2E-15 6.2E-22 4.7E-30 3.0E-38 5.2E-04 1.0E-06 7.7E-10 3.1E-13 1.1E-14
Effect! 0.48 0.41 0.49 0.45 0.43 0.46 0.49 0.54 0.54 0.54 0.50
ag sd? 0.06 0.06 0.04 0.03 0.03 0.02 0.06 0.04 0.03 0.03 0.03
P-valued | 4.7E-16 49E-13 8.2E-32 9.0E-45 1.6E-53 2.7E-79 1.9E-16 | 3.6E-37 5.6E-57 1.3E-64 6.2E-71
Effect! 0.45 0.39 0.46 0.43 0.41 0.43 0.25 0.28 0.28 0.28 0.26
Iig'l'l sd? 0.10 0.07 0.06 0.04 0.04 0.03 0.07 0.06 0.05 0.04 0.03
DR B ag'l'lﬁg'l P-valued | 1.9E-05 5.3E-06 3.4E-11 2.5E-16 1.9E-20 1.1E-27 1.8E-03 5.6E-06 1.8E-08 6.4E-11 1.1E-12
(k=1) Effect! 0.30 0.17 0.23 0.33 0.40 0.35 0.17 0.29 0.19 0.20 0.21
Vg1 502 0.21 0.19 0.13 0.10 0.10 0.09 0.24 0.17 0.13 0.12 0.10
P-valued | 1.4E-01 3.6E-01 8.4E-02 9.9E-04 2.9E-05 6.8E-05 4,7E-01 9.3E-02 1.5E-01 8.2E-02 3.1E-02
0,,=u Effect! 0.75 0.56 0.69 0.76 0.81 0.79 0.42 0.57 0.47 0.48 0.47
+1'1 gLl [gg2 0.22 0.07 0.06 0.04 0.04 0.03 0.07 0.06 0.05 0.04 0.03
Yga P-valued | 5.3E-04 3.1E-03 1.4E-06 1.7E-12 6.4E-15 2.3E-16 9.6E-02 1.8E-03 8.2E-04 1.2E-04 1.1E-05
Effect! 0.50 0.50 0.46 0.47 0.50 0.52 0.46 0.58 0.59 0.59 0.59
ag sd? 0.11 0.11 0.07 0.06 0.05 0.04 0.13 0.08 0.06 0.05 0.05
P-valued® | 6.2E-06 1.3E-05 3.5E-10 8.7E-16 5.4E-25 1.0E-31 2.4E-04 4.3E-13 3.9E-20 2.0E-28 2.0E-35
u Effect! 0.46 0.47 0.44 0.45 0.48 0.49 0.23 0.30 0.31 0.31 0.31
_g’l'z sd? 0.14 0.14 0.09 0.07 0.06 0.05 0.10 0.08 0.06 0.05 0.05
DN B ag'l'ZBg'l P-value® | 8.9E-04 6.9E-04 1.8E-06 3.3E-10 3.9E-15 2.8E-19 1.5E-02 7.7E-05 8.7E-07 1.2E-09 4.9E-10
(k=2) Effect! 0.49 0.43 0.64 0.60 0.54 0.54 0.36 0.57 0.53 0.41 0.34
Yg,2 sd? 0.40 0.40 0.28 0.22 0.18 0.16 0.37 0.25 0.20 0.16 0.15
P-valued | 2.1E-01 2.9E-01 2.2E-02 5.7E-03 2.6E-03 7.7E-04 3.3E-01 2.1E-02 7.2E-03 1.1E-02 1.9E-02
012 = lig2 Effect! 0.96 0.90 1.07 1.05 1.02 1.03 0.59 0.87 0.84 0.72 0.65
+]'/ " 502 0.39 0.08 0.06 0.05 0.04 0.04 0.07 0.06 0.05 0.04 0.04
9.2 P-valued | 1.5E-02 1.5E-02 2.6E-05 2.1E-07 2.3E-09 1.9E-11 1.1E-01 5.5E-04 3.3E-05 1.6E-05 6.9E-06

LJoint model effect size estimates.

2Empirical standard deviation estimated using 500 bootstraps.
30ne degree of freedom Wald test P-values for the SNP effect; P-values indicated in bold satisfy the corrected significance level of P*=1.7E-04.
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Fig. S6-1. Confidence Intervals for the effects of rs10810632 (MAF=7%) on HbAlc and on each T1DC trait estimated by the joint model in
datasets generated with increasing sample sizes by the parametric resampling approach under a specified alternative hypothesis, as described
above. Each plot corresponds to: (A) effect of rs10810632 on HbAlc, (B) direct effect of rs10810632 on DR, (C) direct effect of rs10810632 on DN,
(D) indirect effect of rs1358030 on DR; and (E) indirect effect of rs10810632 on DN. For each plot, “DCCT, N=516" corresponds to the Confidence
Intervals calculated in DCCT; while “Data 1, N=516", to “Data 5, N=2580", correspond to the Confidence Intervals calculated in each of the generated
dataset. We calculate confidence intervals as effect_estimate+z,xbootstrap_sd, where z, correspond to the 1 — o/2 quantile of a standard normal
distribution; with « = 95% and 99%. The vertical dashed lines indicate the reference line for a null SNP effect. One degree of freedom Wald tests for
each of these SNP effects are shown in Table S6-1 and the change of the classification results for rs10810632 according to the sample size is shown

in Fig S6-3.
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Fig. S6-2. As Fig. S6-1 but using Data 6 to 10 generated with a Winner’s curse adjusted effect of rs10810632 (MAF=7%) on HbAlc (equal to

50% of its estimate in DCCT).
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Fig. S6-3. Dependence of SNP classification results for rs10810632 (MAF=7%) with DR/HbA1c and DN/HbALc on increasing sample size,
investigated by parametric resampling (A) under a specified alternative hypothesis, and (B) adjusted for winner’s curse bias. Panel A show
results for Data 1 (N=516) to Data 5 (N=2580), generated using the parametric resampling approach described above, while Panel B, shows results for
Data 6 (N=516) to Data 10 (N=2580), generated as for panel A but with a specified 5, ; adjusted for the Winner’s curse effect. Vertical and horizontal
red dashed lines denote the significance threshold used for the SNP classification procedure (P* = 1.7 x 10~*%). For each plot, we fitted a regression
line (represented by a grey dashed line) to visualize the trend of the classification results with increasing DCCT sample sizes.
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Table S6-2. Joint model test results for rs1358030 (MAF=36%) according to increasing sample size, investigated by parametric resampling
under a specified alternative hypothesis, and adjusted for winner’s curse bias. Only the SNP effects on HbAlc and T1DC traits and the effects

of HbAlc on the T1DC traits are presented here.

Sample size analyses

Sample size analyses accounting for Winner’s cure bias

Traits | Parameters 355(:1-2 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10
N=516 N=1032 | N=1548 | N=2064 N=2580 N=516 N=1032 | N=1548 | N=2064 | N=2580
HbALC Effect! 0.44 0.44 0.44 0.44 0.44 0.44 0.24 0.24 0.24 0.24 0.24
(1=1) By sd? 0.08 0.08 0.06 0.04 0.04 0.03 0.08 0.06 0.05 0.04 0.04
P-value® | 1.1E-08 | 86E-09 | 1.3E-15 | 2.1E-25 | 1.1E-32 2.6E-38 27E-03 | 1.8E-05 | 3.1E-07 | 2.0E-09 | 5.9E-11
Effect! 0.55 0.52 0.60 0.56 0.54 0.55 0.52 0.58 0.61 0.61 0.61
@, sd? 0.06 0.06 0.05 0.03 0.03 0.03 0.06 0.04 0.04 0.03 0.03
P-value® | 1.0E-18 | 5.3E-16 | 2.6E-39 | 1.6E-58 | 1.6E-72 2.5E-103 | 85E-19 | 4.7E-39 | 2.2E-62 | 5.1E-83 | 1.2E-90
Effect! 0.24 0.23 0.27 0.25 0.24 0.24 0.12 0.14 0.14 0.15 0.15
g1 8 sd? 0.05 0.04 0.03 0.02 0.02 0.02 0.04 0.03 0.03 0.02 0.02
DR = %11P91 b olued | 3.8E-06 | 25E-06 | LIE-11 | 35E-18 | 17E-22 3.6E-27 4.8E-03 | 6.9E-05 | 2.0E-06 | 2.6E-08 | 3.7E-10
(k=1) Effect! -0.20 -0.30 -0.30 -0.25 -0.22 -0.19 -0.07 -0.16 -0.21 -0.23 -0.22
Yon 502 0.11 0.12 0.08 0.06 0.05 0.05 0.10 0.08 0.06 0.05 0.05
P-value® | 7.0E-02 | 1.4E-02 | 2.5E-04 | 5.2E-05 | 2.5E-05 7.0E-05 48E-01 | 35E-02 | 1.4E-03 | 2.1E-05 | 5.1E-06
o — Effect! 0.04 -0.07 -0.03 0.00 0.02 0.06 0.05 -0.02 -0.06 -0.09 -0.07
1'1+_ g1 sd? 0.11 0.04 0.03 0.02 0.02 0.02 0.04 0.03 0.03 0.02 0.02
Vo1 P-value® | 7.5E-01 | 5.4E-01 | 6.9E-01 | 9.7E-01 | 6.9E-01 2.3E-01 6.4E-01 | 7.7E-01 | 3.6E-01 | 1.3E-01 | 1.7E-01
Effect! 0.58 0.57 0.55 0.57 0.59 0.61 0.76 0.71 0.71 0.68 0.69
.z sd2 0.11 0.12 0.08 0.06 0.05 0.04 0.11 0.08 0.06 0.05 0.05
P-value® | 2.6E-07 | 1.1E-06 | 35E-13 | 9.2E-21 | 1.5E-31 1.5E-42 15E-11 | 45E-21 | 8.8E-31 | 9.1E-42 | 2.7E-44
P Effectt | 0.254 0.253 0.244 0.251 0.259 0.271 0.180 0.169 0.168 0.164 0.165
_9';'2 P e 0.069 0.065 0.045 0.037 0.031 0.028 0.065 0.043 0.036 0.030 0.028
DN ~ %912Pg1 | 'pyalue® | 2.5E-04 | 9.8E-05 | 7.8E-08 | 1.5E-11 | 1.8E-16 3.0E-22 5.8E-03 | 8.3E-05 | 3.6E-06 | 7.2E-08 | 4.3E-09
(k=2) Effect! -0.31 -0.29 -0.25 -0.38 -0.31 -0.39 -0.34 -0.21 -0.27 -0.31 -0.29
Vo2 NG 0.22 0.26 0.16 0.12 0.10 0.09 0.24 0.17 0.13 0.11 0.10
P-value® | 1.6E-01 | 2.6E-01 | 1.2E-01 | 1.6E-03 | 2.7E-03 1.5E-05 15E-01 | 2.1E-01 | 3.0E-02 | 2.9E-03 | 5.5E-03
012 = Hors Effect! -0.05 -0.04 -0.01 -0.13 -0.05 -0.12 -0.16 -0.04 -0.10 -0.15 -0.12
e sd? 0.21 0.04 0.03 0.02 0.02 0.02 0.06 0.04 0.03 0.03 0.03
9.2 P-value® | 8.0E-01 | 8.9E-01 | 9.7E-01 | 2.7E-01 | 6.3E-01 1.6E-01 51E-01 | 81E-01 | 4.1E-01 | 1.7E-01 | 2.5E-01

LJoint model effect size estimates.

2Empirical standard error estimated using 500 bootstraps.
30ne degree of freedom Wald test P-values for the SNP effect; P-values indicated in bold satisfy the corrected significance level of P*=1.7E-04
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Fig. S6-4. Confidence Intervals for the effects of rs1358030 (MAF=36%) estimated by the joint model to datasets with increasing sample sizes
generated by the parametric resampling approach under a specified alternative hypothesis. Each plot corresponds to: (A) effect of rs1358030 on
HbAlc, (B) direct effect of rs1358030 on DR, (C) direct effect of rs1358030 on DN, (D) indirect effect of rs1358030 on DR; and (E) indirect effect of
rs1358030 on DN. For each plot, “DCCT, N=516" corresponds to the Confidence Intervals calculated in DCCT; while “Data 1, N=516", to “Data 5,
N=2580", correspond to the Confidence Intervals calculated in each of the generated dataset. We calculate confidence intervals as
effect_estimate+z,xbootstrap_sd, where z, correspond to the 1 — a/2 quantile of a standard normal distribution; with « = 95% and 99%. The vertical

dashed lines indicate the reference line for a null SNP effect.
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Fig. S6-5. As Fig. S6-4 but Data 6 to 10 are generated with an effect of rs1358030 (MAF=36%) on HbAlc adjusted for the Winner’s curse
bias
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Fig. S6-6. Dependence of SNP classification results for rs1358030 (MAF=36%) with DR/HbA1c and DN/HbALc on increasing sample size,
investigated by the parametric resampling approach (A) under a specified alternative hypothesis, and (B) adjusted for winner’s curse bias.
Panel A show results for Data 1 (N=516) to Data 5 (N=2580), generated using the parametric resampling approach described above, while Panel B,
shows results for Data 6 (N=516) to Data 10 (N=2580), generated as for panel A but with a specified S, ; adjusted for the Winner’s curse effect (set to
50% of its estimate in DCCT). Vertical and horizontal red dashed lines denote the significance threshold used for the SNP classification procedure
(P* = 1.7 x 10~%). For each plot, we fitted a regression line (represented by the grey dashed line) to visualize the trend of the classification results
with increasing DCCT sample sizes.
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