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Supplementary Methods 1 

Statistical modeling and filtering of phenotypic data 2 

To screen the raw high-performance liquid chromatography (HPLC) data for significant outliers, 3 

we fitted a mixed linear model for each tocochromanol phenotype in ASReml-R version 3.0 4 

(Gilmour et al. 2009). The full model (Equation 1) fitted to the data was as follows: 5 

Yijklmn = μ + checki + genotypei + yearj + group × yearij+ genotype × yearij + tier(year)jk + pass(tier 6 

× year)jkl + range(tier × year)jkm + plate(year)jn + εijklmn (Equation 1) in which Yijklmn is an individual 7 

phenotypic observation; μ is the grand mean; checki is the fixed effect for the B73 check, where 8 

it is set to 0 if the genotype is a non-check line; genotypei is the fixed effect of the ith genotype 9 

(non-check line), where it is set as 0 and omitted if the observation is of the B73 check; yearj is 10 

the effect of the jth year; group × yearij is the interaction term between the ith group and jth year, 11 

where groupi is an indicator variable with two levels that indicates whether the observation is of a 12 

B73 check or non-check line; genotype × yearij is the effect of the interaction between the ith 13 

genotype (non-check line) and jth year, which is not included in the model for the B73 check; 14 

tier(year)jk is the effect of the kth tier within the jth year; pass(tier × year)jkl is the effect of the lth 15 

pass within the kth tier within the jth year; range(tier × year)jkm is the effect of the mth range 16 

within the kth tier within the jth year; plate(year)jn is the effect of the nth HPLC autosampler 17 

plate within the jth year; and εijklmn is the residual error effect assumed to be independently and 18 

identically distributed (i.i.d.) according to a normal distribution with mean zero and variance σε
2, 19 

that is ~iid N(0, σε
2). Of these terms, μ, check, and genotype were modeled as fixed effects, while 20 

all other terms were modeled as random effects. Studentized deleted residuals (Neter et al. 1996) 21 

generated by the model were used to remove 147 significant outliers (where an outlier is a single 22 
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plot observation for a single trait) at a Bonferroni adjusted significance threshold of α = 0.05. 23 

With the outlier-screened raw HPLC data set, we generated best linear unbiased estimator 24 

(BLUE) values for 1,762 inbred lines across years (Supplementary Table S1) by fitting the full 25 

model (Equation 1) in ASReml-R version 3.0 (Gilmour et al. 2009). The full model was refitted 26 

with genotype as a random effect to generate variance component estimates for the calculation of 27 

heritability on a line-mean basis (Holland et al. 2003; Hung et al. 2012). 28 

Genotype data processing and imputation 29 

The marker genotype imputation approach implemented in Wu et al. (2021) was used to generate 30 

a high-density single-nucleotide polymorphism (SNP) marker set in B73 RefGen_v4 coordinates 31 

for the Ames panel. To construct the target SNP genotype set, unimputed genotyping-by-32 

sequencing (GBS) SNP genotypes scored at 943,455 loci in the Ames panel by 33 

Romay et al. (2013) were downloaded from CyVerse 34 

(ZeaGBSv27_publicSamples_raw_AGPv4-181023.vcf.gz, available at 35 

http://datacommons.cyverse.org/browse/iplant/home/shared/panzea/genotypes/GBS/v27), which 36 

provided 1,779 GBS samples for 1,493 of the 1,497 lines that had best linear unbiased estimator 37 

(BLUE) values for tocochromanol phenotypes. Given that there were 220 lines with more than 38 

one corresponding GBS sample having a call rate ≥ 20%, we followed the approach of Wu et al. 39 

(2021) to merge two or more GBS samples from the same line. Briefly, a stringently filtered 40 

SNP set (call rate ≥ 50%, % heterozygosity ≤ 10%, index of panmixia FIT ≥ 0.8, minor allele 41 

frequency ≥ 0.01 and linkage disequilibrium r2≤ 0.2) of 32,267 SNPs derived from the Romay et 42 

al. (2013) unimputed marker data set was used to calculate average pairwise identity-by-state 43 

(IBS) between multiple samples of the same line using PLINK version 1.9 (Purcell et al. 2007). 44 
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A total of 19 lines with a mean IBS value < 0.95 for all within-line sample comparisons were 45 

removed from the analysis, followed by consensus genotype calling for the remaining 201 lines. 46 

Collectively, the final target data set consisted of 443,419 biallelic GBS SNPs scored on a 47 

retained 1,462 lines with a call rate ≥ 0.2%, heterozygosity ≤ 10%, and inbreeding coefficient (F) 48 

≥ 0.8. All heterozygous genotype calls were set to missing prior to imputation. 49 

The reference SNP genotype set, which was identical to that constructed in Wu et al. 50 

(2021), consisted of 14,613,169 SNPs derived from maize HapMap 3.2.1 (Bukowski et al. 2018). 51 

In BEAGLE v5.0 (Browning et al. 2018) with parameters as previously specified in Wu et al. 52 

(2021), the genotypes at the 14,613,169 SNP loci were imputed based on 443,419 GBS SNPs 53 

(target set) in the 1,462 Ames panel lines. This data set of 14,613,169 loci served as the 54 

foundation for the subsetting of markers for all of the quantitative genetic analyses conducted in 55 

this study. 56 

Expression data set quality control 57 

To verify the quality and integrity of the samples, SNPs were called using the 3′ QuantSeq read 58 

alignments and compared to SNP calls from a 942 maize line RNA-Seq data set (WiDiv-942 59 

panel) (Gage et al. 2019). In total, 375 lines overlapped with the WiDiv-942 panel, for a total of 60 

430 3′ QuantSeq samples and 54 positive controls. First, 3′ QuantSeq reads were mapped to the 61 

B73 RefGen_v4 assembly (Jiao et al. 2017) following the HISAT2 mapping protocol indicated 62 

above. Duplicate reads were identified and marked using Picard tools MarkDuplicates version 63 

2.20.8 (https://broadinstitute.github.io/picard/). Output was sorted using SAMTools sort version 64 

1.9 and a pileup file created using SAMTools mpileup with BAQ computation disabled (-B) and 65 

alignments with a mapQ less than 60 were omitted (-q 60), allowing for only unique alignments 66 
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to be processed. Only positions with a base quality of greater than or equal to 20 were included 67 

and all insertions and deletions were discarded. Genotype calls were made at a position in an 68 

individual if the coverage was at least five reads, but not greater than 500 reads, and the allele 69 

made up greater than 3% of the calls at that position in the individual. If more than two alleles 70 

passed the coverage and frequency cutoff, the position was scored as heterozygous and set to 71 

missing data only when calculating percent identity. After removing positions from the WiDiv-72 

942 SNP matrix that were not called in the 3′ QuantSeq data set, there were 919,074 remaining 73 

positions. Percent identity between the same line in the two data sets was calculated by taking 74 

the number of positions that had the same genotype call at a position divided by the total number 75 

of positions excluding missing data positions in either data set. 76 

Stringent filtering was employed to curate the final expression data set and ensure it 77 

contained high quality data. Samples were filtered out based on the following criteria: sampling 78 

concerns such as moldy kernels etc. (12 samples removed), number of cleaned reads were below 79 

5 million (1 sample removed), a HISAT2 alignment rate of less than or equal to 65% (17 samples 80 

removed), a Pearson’s correlation value (r) less than 0.90 with 40 or more samples (3 samples 81 

removed), samples that had less than 95% identity when compared to their high confidence 82 

WiDiv-942 panel counterpart during genotype confirmation assessment (15 samples removed), 83 

and finally removal of samples that had an heterozygosity greater than or equal to 10% (339 84 

samples removed). This final heterozygosity filter was employed to remove samples that were 85 

contaminated by spillover during library construction at the Cornell Institute of Biotechnology’s 86 

Genomics Facility. This stringent heterozygosity filtering was employed to ensure the final data 87 

set was free of contaminating reads that may have impacted downstream analysis. The final data 88 

set of 784 high confidence, high quality samples included 43 B73 positive control samples and 89 
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741 collected field samples of check and noncheck lines. The B73 positive controls were used 90 

during data processing for quality control. Only the 741 check and noncheck samples were used 91 

for downstream expression data analysis. 92 

Statistical modeling of expression data 93 

To account for the potential effect of different amounts of accumulated heat units on kernel 94 

development, growing degree days (GDD, Bollero et al. 1996) from pollination to fresh-harvest 95 

at the ~23 DAP time point for each ear was included as a model term when calculating BLUE 96 

expression values. 97 

For each gene, BLUE values were generated for each of the 664 non-check lines in 98 

ASReml-R version 3.0 (Gilmour et al. 2009) as follows: 99 

Yijklmn = μ + checki + genotypei + α × GDDj + tierk + block(tier)kl + platem + lanen+ εijklmn 100 

(Equation 2) 101 

in which Yijklmn is an individual rlog-transformed value; μ is the grand mean; checki is the fixed 102 

effect for the ith check, where it is set to 0 if the genotype is a non-check line; genotypei is the 103 

fixed effect of the ith genotype (non-check line), where it is set as 0 and omitted if the ith 104 

observation is of a check line; α is a scalar regression coefficient for the GDD value of ears 105 

harvested on the jth day (GDDj); tierk is the kth tier; block(tier)kl is the lth block in the kth tier; 106 

platem is the mth RNA sample plate; lanen is the nth lane on an Illumina sequencer (minimum unit 107 

of the RNAseq run); and εijklmn is the residual error effect assumed to be ~iid N(0, σε
2). With the 108 

exception of the grand mean, check, genotype and GDD, all terms were fitted as random effects. 109 

Expression data analysis for vte7 110 

Given that the vte7 locus consists of tandemly duplicated genes (Zm00001d006778 and 111 
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Zm00001d006779) with high pairwise nucleotide sequence identity (> 99%) in the B73 112 

RefGen_v4 assembly (Jiao et al. 2017), the reads pertaining to these two genes were not 113 

uniquely mappable with our standard expression abundance determination bioinformatic 114 

pipeline. Therefore, to calculate the transcript abundances at the vte7 locus, the number of read 115 

alignments to the two gene models using multi-mapping reads were summed and normalized to 116 

counts per million alignments (CPMA) as (total count within both loci/total reads 117 

aligned)*1,000,000. Next, the CPMA values were fitted with the Equation 2 model to generate 118 

BLUE values, which were then screened for outliers with Studentized deleted residuals (Neter et 119 

al. 1996) to produce the final vte7 data set (Supplementary Data Set 3). 120 
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