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S.1 Definition of the backward mutation rate

Consider the equilibrium model of balancing selection. The equilibrium frequency of the
selected variant Ai is p̂i (i = 1, 2). During reproduction, an Ai allele mutates to Aj with
probability uij per generation. Forward in time, after reproduction, the frequency of Ai

becomes p̂i(1− uij) + p̂juji, where the second term is the frequency of mutants amongst
all Ai alleles. Going backward in time, the backward mutation rate is the probability
that an Ai allele in the post-reproduction population is descendant from an Aj parent
via mutation:

vij =
p̂juji

p̂i(1− uij) + p̂juji

Assuming that uij is much smaller than both p̂i and p̂j, vij ≈ ujip̂j/p̂i, which is the same
as (6) in Kaplan et al. (1988).

S.2 Calculating the Green’s matrix

Let {Xt}t≥0 be a Markov jump process with sub-intensity matrix S. That is, Xt = i
means that the process is in state i at time t. Let Zj =

∫∞
0

1(Xt = j)dt denote the time
spent in state j before absorption, where 1(Xt = j) = 1 if Xt = j, and 0 otherwise. The
expected time spent in state j given initial state i is then

uij = E [Zj|X0 = i]

= E

[∫ ∞
0

1(Xt = j)dt|X0 = i

]
=

∫ ∞
0

E [1(Xt = j)|X0 = i] dt

=

∫ ∞
0

Pr(Xt = j|X0 = i)dt

=

∫ ∞
0

(
eSt
)
ij

dt

=

(∫ ∞
0

eStdt

)
ij

.

To complete the proof, we note that∫ ∞
0

eStdt =
[
S−1eSt

]∞
0

= −S−1

where we have used the property that (eSt)ij → 0 for t→∞.

S.3 The intensity matrix for calculating the total branch length
of a sample size of three

S2 and s2 in (12) are the same as the corresponding elements defined in (3).

S3 =


−3M21 − 3

p̂2
3M21 0 0

M12 −M12 − 2M21 − 1
p̂2

2M21 0

0 2M12 −2M12 −M21 − 1
p̂1

M21

0 0 3M12 −3M12 − 3
p̂1

 (S1)
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and

S32 =


3
p̂2

0 0

0 1
p̂2

0

0 1
p̂1

0

0 0 3
p̂1

 . (S2)

S.4 The intensity matrix for calculating the SFS for a sample
size of three

The sub-matrices in (12) for the model leading to Table 1 are given below.

S3 =


−3M21 − 3

p̂2
3M21 0 0

M12 −M12 − 2M21 − 1
p̂2

2M21 0

0 2M12 −2M12 −M21 − 1
p̂1

M21

0 0 3M12 −3M12 − 3
p̂1

 . (S3)

S32 =


3
p̂2

0 0 0

0 1
p̂2

0 0

0 0 1
p̂1

0

0 0 0 3
p̂1

 . (S4)

S2 =


−2M21 − 1

p̂2
M21 M21 0

M12 −M12 −M21 0 M21

M12 0 −M12 −M21 M21

0 M12 M12 −2M12 − 1
p̂1

 . (S5)

sT2 =
(

1
p̂2

0 0 1
p̂1

)
. (S6)

S.5 A non-equilibrium phase-type model

Consider a continuous time Markov chain with finite state space {1, 2, ..., K,K+1}, where
states 1, ..., K are transient, and state K + 1 is absorbing. It is assumed that the time
interval [0,∞) is subdivided into H non-overlapping epochs. The duration of epoch h is
[th−1, th), where 1 ≤ h ≤ H, t0 = 0, and tH = ∞. The intensity matrix for epoch h is
constant and takes the form:

Λh =

(
Sh sh
~0 0

)
(S7)

where Sh the K-by-K sub-intensity matrix, and sh is the K-by-1 exit rate vector.
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Define 
dh = th − th−1
h(t) = min{h : 1 ≤ h ≤ H and th−1 ≤ t < th}
dh(t) = t− th(t)−1

(S8)

The transition probability between time 0 and time t is given by:

P (t) =

[ h(t)−1∏
h=1

Ph(dh)

]
Ph(t)(dh(t)) (S9)

where Ph(t) is the transition matrix for epoch h. Note that the matrices do not com-
mute. So the multiplication should be carried out from left to right, according to the
chronological order of the epochs. From standard Markov chain theory, we know that:

Ph(t) =

(
eSht ~1− eSht~1
~0 1

)
. (S10)

Define

S(t) =

[ h−1∏
h=1

eShdh

]
eSh(t)dh(t) . (S11)

We can rewrite (S9) in a more compact form:

P (t) =

(
S(t) ~1− S(t)~1
~0 1

)
. (S12)

The probability that the process jumps to the absorbing state in the time interval [t, t+dt)
is given by:

f(t)dt =
K∑
i=1

αi

K∑
j=1

sij(t)sj(t)dt = αS(t)s(t)dt (S13)

where α is the initial probability vector, sij(t) are elements of S(t), and sj(t) are elements
of sh(t), the exit rate vector at time t. The Laplace transform of f(t) is defined as:

L(z) =

∫ ∞
0

e−ztαS(t)s(t)dt (S14)

for z ≥ 0. Noting that sh = −Sh
~1 and substituting (S11) into (S14) leads to:

L(z) = −α
H∑

h=1

[ h−1∏
i=1

eSidi

][ ∫ th

th−1

e−(zI−Sh)tdt

]
e−Shth−1Sh

~1, (S15)

where I is the identity matrix. To evaluate the integral, we define Ah(z) = Ah =
−(zI − Sh). Because all eigenvalues of Ah have strictly negative real parts (Hobolth
et al., 2019), limt→∞ e

Aht = 0. We obtain:∫ th

th−1

eAhtdt = A−1h

(
eAhth − eAhth−1

)
. (S16)
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Taking the derivative with respect to z, we obtain:

d

dz

∫ th

th−1

eAhtdt = A−1h

[
(A−1h − thI)eAhth − (A−1h − th−1I)eAhth−1

]
. (S17)

Noting that the mean time to absorption is given by −dL(z)
dz

∣∣
z=0

and that Ah(0) = Sh,
we have:

E[T ] = α
H∑

h=1

[ h−1∏
i=1

eSidi

][
(S−1h − thI)eShdh + th−1I − S−1h

]
~1. (S18)

Expanding the equation and removing terms that cancel each other, we arrive at Theorem
1. To facilitate further discussion, we state this Theorem in a slightly different way:

Corollary 1. Let α = (α1, ..., αK), where αi is the probability that the initial state is i
and

∑K
i=1 αi = 1. Let T be a random variable representing the time to absorption. We

have:

E[T ] = αU~1 (S19)

where {
U =

∑H
h=1

[∏h−1
i=1 e

Sidi

]
Uh

Uh = eShdhS−1h − S
−1
h

(S20)

and eShdh = 0 if dh =∞.

We have also derived an expression for the second moment of T in Theorem 2 in Supple-
mentary Text S.7.

Let uij,h represent the elements of Uh. uij,h is the amount of time the process spends
in state j during [th−1, th) given that it is in state i at time th−1. That is, Uh is the Green’s
matrix for the h-th epoch. Also note that element i in the vector α

∏h−1
j=1 e

Sjdj gives the
probability that the process is in state i at time th−1. Thus, Corollary 1 shows that,
under this stepwise model, the Green’s matrix for the entire process U is the weighted
average of the Green’s matrices of all the constituent epochs.

As noted in the main text, the expectation of both Ln1,n2 and φ(n1,n2) can be written
in the form αUD. Let Y represent either of these two random variables. Corollary 1
tells us that:

E[Y ] =
H∑

h=1

E[Yh] (S21)

where

E[Yh] = α

[ h−1∏
i=1

eSidi

]
UhD (S22)

which is the expected contribution from epoch h.
We have so far assumed that the state space is the same across epochs. This restriction

can be relaxed. Let the size of the state space in epoch h be Kh. Let Eh−1,h be a
Kh−1-by-Kh matrix that defines the mapping of the states from epoch h − 1 to epoch
h (h = 1, ..., H and E01 = I, the identity matrix). Corollary 1 holds if we replace∏h−1

i=1 e
Sidi by (

∏h−1
i=1 Ei−1,ie

Sidi)Eh−1,h. For (S21), we additionally need to replace D by
an epoch-specific Dh.
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S.6 Coalescent simulation with stochastic allele frequency tra-
jectories

The theory developed in the main text assumes that the allele frequencies of the variants
at the selected locus change deterministically over time. In reality, frequencies of the
selected variants fluctuate because of random genetic drift. To investigate the effects of
stochastic allele frequency fluctuation on the accuracy of our model predictions, we con-
ducted simulations with stochastic allele frequency trajectories. Each simulation replicate
contained two steps: (1) forward simulation to obtain allele frequency trajectories for the
selected variants given the demographic history; (2) coalescent simulation for a sample of
n alleles at a linked neutral site, conditioning on the trajectories obtained in step 1. The
forward simulation step was based on a custom R script, which is available on request.
The coalescent simulation step was performed using mbs (Teshima and Innan, 2009).

Forward simulations

Consider a Wright-Fisher population. The variants at the focal selected site are repre-
sented by A1 and A2, respectively. The fitnesses of A1A1, A1A2, and A2A2 are denoted by
w11, w12, and w22, respectively. The model has the following life cycle: mutation, random
mating, selection, and sampling. The mutation rate from A1 to A2 is u12 per generation,
and that in the opposite direction is u21. Note that reversible mutation between A1 and
A2 is included in the life cycle to make the model consistent with mbs.

Let the frequency of A2 in generation t be p2. After mutation, it becomes p∗2 =
p2(1− u21) + (1− p2)u12. After random mating and selection, its frequency becomes

p∗∗2 = p∗2 +
(1− p∗2)p∗2(w2. − w1.)

w̄
(S23)

where w1. = (1−p∗2)w11+p∗2w12, w2. = (1−p∗2)w12+p∗2w22, and w̄ = (1−p∗2)w1.+p
∗
2w2.. Let

the population size of generation t+ 1 be Nt+1. We draw a random number X from the
binomial distribution with parameters 2Nt+1 and p∗∗2 . The frequency of A2 in generation
t+ 1 is therefore X/(2Nt+1). Thus, this approach can accommodate arbitrary changes in
population size.

Models with strong balancing selection and changes in population size

This set of simulations are intended to check whether the results presented in Figures
5a and 5b are robust to stochastic fluctuation in the frequencies of the selected variants.
We assume overdominance with w11 = 1 − s1, w12 = 1, and w22 = 1 − s2. The sample
size was n = 20. Because L (the total branch length) is insensitive to the equilibrium
frequencies of A1 and A2 when the sample size is not small (see Figure 4), we assumed a
symmetric selection model with s1 = s2 = s (i.e., the equilibrium frequencies of A1 and
A2 are 50%). To simulate the population expansion model presented in 5a, we assumed
that Ne,1 = 20, 000 (the effective population size of the current epoch) and Ne,2 = 2, 000
(the effective population size of the ancestral epoch). For the population reduction model
in 5b, we used Ne,1 = 2, 000 and Ne,2 = 20, 000.

For both demographic models, we assumed that the frequency of A2 at the beginning
of the simulations was 50%. We then allowed the population to evolve forward in time for
50Ne,2 generations. The population size was then changed to Ne,1. We let the population
evolve for another 2Ne,1t generations, where t is the time parameter shown in Figure 5.
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If either A1 or A2 was lost before the end of the simulation, the process was restarted.
The allele frequency trajectory obtained was then passed onto mbs to obtain simulated
sequence polymorphism data at a linked neutral site. L was estimated using S/θ, where
S is the observed number of segregating sites, θ = 2Ne,1u, and u is the neutral mutation
rate.

Recent balancing selection and selective sweeps

Here we set out to test whether phase-type theory can produce accurate predictions about
the SFS. As in Figure 10 in the main text, we considered overdominance with fitnesses
w11 = 1 − s1, w12 = 1, and w22 = 1 − s2. The corresponding sweep model has fitnesses
w11 = 1, w12 = 1 + s1, and w22 = 1 + 2s1. In the forward simulations, we assumed that
A2 was the mutant allele, and it appeared as a single copy in the population when it
first arose. We then allowed its frequency to evolve. We set t = 0 when the frequency
of A2 exceeded ε = 1/γ1 for the first time, where γ1 = 2Ns1 and N is the effective
population size. We allowed the forward simulation to continue until, time t (in units of
2N generations). The trajectory of A2 was then used by mbs for obtaining samples at a
linked neutral site. The unfolded SFS as defined in the main text at the neutral site was
estimated using data from 10,000 replicates.

S.7 The second moment of the mean time to absorption

The second moment of T is given by d2L(z)
dz2

∣∣
z=0

. The second derivative with respect to z
for the integral in (S16) reads:

d2

dz2

∫ th

th−1

eAhtdt = A−1h

1∑
k=0

(−1)keAhth−k
[
A−2h +

(
A−1h − th−kI

)2]
(S24)

Substituting (S24) into (S15) leads to the following result.

Theorem 2. The second moment of the mean time to absorption, E[T 2], is given by:

α

H∑
h=1

[ h−1∏
i=1

eSidi

] 1∑
k=0

(−1)k+1eSh(th−k−th−1)
[
S−2h +

(
S−1h − th−kI

)2]~1. (S25)

S.8 Approximating the expected pairwise coalescence time un-
der the model of recent balancing selection

As in the main text, we assume that a new allele A2 has arisen by mutation, and has
spread to a frequency p̃2 that is close to its equilibrium value under balancing selection,
which is p̂2 = s1/(s1+s2) with heterozygote advantage. Providing that the recombination
rate is not too high relative to the strength of selection, the expected coalescence time
for a pair of A2 alleles sampled at frequency p̃2 can be obtained from Equations 9, 10,
11a and A1-A3 of Charlesworth (2020b), where ∆π in his Equation 11a is equivalent to
the reduction in the mean pairwise coalescence time relative to the neutral value of 2Ne

generations. To obtain ∆π, p̃2 replaces q2 in Equations 9, 10 and A1-A3 of Charlesworth
(2020b), where the selection parameters in Equations A1-A3 are γ = 2Nes1, a = 1, and
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b = –(s1 + s2)/s1. At the time when p̃2 is reached, the values of the expected coalescent
times (on the timescale of 2Ne generations) for a pair of A1 alleles is approximately equal
to 1.

In addition, the possibility that a recombination event introduces the neutral site from
an A1 allele onto an A2 background, thereby reducing the initial divergence at the neutral
site between an A1 and A2 pair, is modelled by using Equation A3a of Charlesworth
(2020b) with q2 replaced with 1–p2 and q with 1 − ε, to yield a probability of an A1

to A2 recombination event of Pr1. In addition, the selection parameters a and b should
be replaced with a + b, and –b, respectively. It is assumed that such a recombination
event is followed by coalescence with a non-recombined neutral site associated with A2,
with a coalescence time equal to the duration of sweep, ts, as given by 23 with p2 = p̃2.
The divergence between an A1 and A2 pair at the time of sampling is then given by
1–Pr1(1–ts).

A simple way to obtain the pairwise coalescence times at an arbitrary time after
the allele frequency p̃2 has been reached is to consider the recursion relations for the
corresponding pairwise expected diversity measures with a neutral mutation rate of u
under the infinite sites mutation model and assuming that the frequency of A2 remains
close to its equilibrium value. The scaled mutation rate in the absence of selection,
θ = 2Neu, is sufficiently small that second-order terms in θ can be neglected (Malécot,
1969, p. 40; Wiehe and Stephan, 1993, Equation 6a). Writing πij for the expected
diversity for a pair of alleles Ai and Aj, and using primes for their values in a new
generation, and neglecting second-order terms, we have:

π′11 =

[
1−

(
2u+ 2rp̂2 +

1

2Nep̂1

)]
π11 + rp̂1π12 + 2u (S26a)

π′12 = 2rp̂2π11 + [1− (2u+ r)] π12 + 2rp̂1π22 + 2u (S26b)

π′22 = rp̂2π12 +

[
1−

(
2u+ 2rp̂1 +

1

2Nep̂2

)]
π22 + 2u (S26c)

The coefficients of the πij in these equations provide the corresponding coefficients
for the recursions of the deviations of the πij from their equilibrium values, thereby
eliminating the term in 2u on the right-hand sides of the equations. If the πij are scaled
relative to their expected value 2θ in the absence of selection, and u is set arbitrarily
close to zero, solving for equilibrium gives πij values relative to 2θ that are equivalent to
the equilibrium coalescent times given by (8), as can be verified by direct calculation.

By setting u to zero in (S26), and using the scaled the πij, we thus obtain a recursion
for the deviations from equilibrium of the corresponding expected pairwise coalescence
times on the timescale of 2Ne generations. While it is possible in principle to diagonalize
the relevant matrix, and express the solution for an arbitrary time after reaching p̃2 in
term of its eigenvalues and eigenvectors, in practice it is simpler to iterate the matrix
with assigned numerical values of the parameters. In order to save computation time,
a relatively small value of Ne can be used, and the recombination parameters rescaled
accordingly to represent a much larger Ne with the same value of ρ = 2Ner. The initial
relative values of π11, π12, and π22 are 1, 1, and 1 – ∆π.
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