SUPPLEMENTARY TEXT

1. Appendix A: Distribution of lengths of introgressing blocks

Autosomal introgression

We allow selection coefficients (s), migration rates (m) and recombination rates (c) to be different across the two sexes,
thus generalizing the analysis of Barton (1983). In the case of autosomal introgression, the equilibrium proportions of any
deleterious block must be exactly the same in males and females in the deterministic limit, even when sy # sp, my # mp,
cy # cp. Let P(y) denote the fraction of diploid individuals (of any sex) carrying a single autosomal deleterious block

with y introgressed alleles. At equilibrium, P(y) satisfy the following equations:
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Thus P(y) satisfy a set of recursions of the form:
L

0=—h()Py) +ry) Y ky)PY)+ fY)d,.L (8)

y'=y+1

Since recursions of this form also appear in all subsequent analyses presented here, it is useful to provide a general
solution. Following Barton (1983) and Barton and Bengtsson (1986), we can re-express these recursions in terms of the
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These can be solved for G(y) and thence P(y):
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Thus the fraction of diploid individuals (of any sex) carrying a single autosomal deleterious block with y introgressed

alleles are:
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The frequency of autosomal deleterious blocks is just Pa(y) = —P;y). When evolutionary processes are slow, i.e.,

mar,mp, SpL, spL, ey Ly cp L < 1, such that we can ignore all second and higher order terms in these parameters, this

simplifies to:
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X-linked introgression

Let Pr(y,t) and Py (y,t) denote the fraction of females and males (respectively) carrying a single X-linked deleterious

block with y introgressed alleles at time t¢:
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where d, 1, equals 1 for y = L, and 0 otherwise; spom,r = ;—*;

Equation (13a) describes how the fraction of females carrying a single X-linked introgressed block with y deleterious
alleles changes over time. A female may inherit an entire X-linked block (without any recombination) from her mother
(term 1), or inherit a fragment of a larger X-linked block carried by the mother (term 2), or inherit an X-linked block,

necessarily without any recombination, from the father (term 3). Equation (13b) for the frequencies of X-linked deleterious

blocks in males is similar, except that there is no inheritance from fathers. In addition, for y = L, we must account for the



fact that the full X-linked block may have been inherited from an immigrant mother or father (final term in egs. (13a) and
(13b)). Since each immigrant female carries two copies of the deleterious block, she must necessarily transmit the entire
block to all her offspring (irrespective of whether recombination occurs). Assuming that she has on average e~ Shom.FL
male and e~*mom. 7L female offspring in each generation (where e~*rom.# L ig her relative fitness), the frequency of the full
X-linked block (with L deleterious alleles) must increase by mpe™rom#L per generation. A similar argument applies for
immigrant males, who can transmit the X-linked block only to daughters (at rate ~ myre=*M% per generation).

At equilibrium, we have Pr(y,t+1) = Pp(y,t) = Pp(y) and Py (y,t+1) = Pay(y,t) = Pa(y). This allows us to solve

explicitly for the equilibrium frequencies Pr(y) and Py (y):
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These can be rewritten as follows:
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Equation (15a) is of the general form described above, and can be solved as before to yield the following expressions

for Pr(y):
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The corresponding block frequencies in males Py;(y) and the average frequency of X-linked blocks in the population



Px(y) = w can be obtained from these using eq. (15b).

Continuous time limit:

In the limit where all evolutionary processes are slow (i.e., mar, mp, sy L, spL,cpL < 1), such that genotype frequencies
change very little in a single generation, it is useful to further approximate equations (13) by the corresponding continuous
time equations. Formally, this can be done by substituting: m — mdt, s — sdt, ¢ — cdt and so on, where §t is an
infinitesimal time interval. Then by Taylor expanding equations (13) in powers of ¢ and retaining only lowest order terms

in 6t, we obtain:
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The fact that Pa(y,t) ~ M implies that the total frequency of any X-linked block, given by Px(y,t) =

w is approximately Pr (y t) . Thus, we have:
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Equation (18) is identical in form to the corresponding equation for the dynamics of the block length distribution in the
autosomal case (Barton 1983) (see also eq. (1) in the main text), but with s4, ma and ca4 replaced by the sex-averaged
selection coefficient sx, sex-averaged migration rate myx and sex-averaged recombination rate cx (which are weighted
sums of male and female contributions). Equation (18) can be solved to obtain an exact time-dependent solution for
Px(y,t) (see Appendix in Baird 1995).

However, it is more useful to consider equilibrium block frequencies Px(y), obtained by setting the time derivative
in equation (18) to zero. The resultant equations can be solved recursively, as in Barton (1983), by first re-expressing it
in terms of the cumulative distribution Gx(y) = EL: Px (y'), then solving recursively for Gx(y), and finally using this

y'=y
solution to obtain Px(y) = Gx(y) — Gx(y + 1). This yields the following equilibrium proportions of different X-linked

blocks:
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where 6y = $X is a measure of the strength of coupling between deleterious alleles on the X chromosome. This can be



L

used to calculate the average frequency of deleterious alleles, averaged over all loci on the X chromosome: px = > Px(y)%
y=1

Note that in writing eq. (13), we assumed that deleterious alleles have arbitrary dominance coefficient h (such that

—srL respectively,

females who are homozygous vs. heterozygous for the full deleterious block have fitness e~*»m.#X and e
where spom,r = Z—i) However, retaining only lowest order terms in sg, sps, cp, mp and mj, results in the approximations:
mpeShem FL  mp and mare*ML ~ my,. Thus, the final equation (18) is independent of the dominance coefficient of

deleterious alleles, as long as net selection against immigrant genotypes, S = sL, is sufficiently weak. For larger values of

S, we expect Pr(y) and Pus(y) to depend on h, as can be seen from the full solution in eq. (16) above.

2. Appendix B: Strength of a multilocus barrier to the flow at a neutral

marker

Autosomal barrier

We consider the rod model where the neutral marker is on one side of the deleterious block. Then assuming that
deleterious blocks remain rare in the population, the neutral marker will always be found within one of L 4+ 1 possible
genetic backgrounds, where each such background is defined by the number y of deleterious alleles that it contains.
Moreover, in the case of autosomal introgression, the equilibrium proportions of any genetic background must be exactly
the same in males and females in the deterministic limit, irrespective of whether parameters are unequal across sexes. Let
U(y) denote the fraction of individuals (of any sex) carrying a single introgressed block which contains the neutral marker

in conjunction with y deleterious alleles. At equilibrium, we have:

0=

(I—cp(y—1+a))esmy n (I1—cp(y—1+4+a))e 5rY

; ; S|vw e ¥ (e Fenuy)

y'=y+1 (20)

+ [mFe*Shom,Fy + mMe*Shom,My](sy I

)
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The barrier strength can be found as:
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The recursions in (20) have the form described above, and can be solved to determine U(y) for all y. Substituting these

expressions for U(y) into eq. (21) yields the following expression for barrier strength:
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Note that the barrier strength is independent of the strength of migration (as it should be), and depends only on the
asymmetry in migration rates between the two sexes. In the absence of sex-specificities, i.e., for sp; = sp = s, myr =

mp =m, ¢y = cp = c and hyy = hp = h, the expression for barrier strength reduces to a simpler form:
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This is identical to the expression in eq. A3 of Barton and Bengtsson (1986) except for the extra term e®*om’  which

accounts for the fact that immigrants suffer an initial (i.e., first-generation) disadvantage which is proportional to e~srem

L in the case of the haploid model considered by Barton and Bengtsson 1986).

(or e~
In the limit where all evolutionary processes are slow, such that second order terms in m, s and ¢ can be neglected,

the expression in eq. (22) simplifies to:
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where 04 = 2—2 is a measure of the strength of coupling between locally deleterious alleles on the autosomes, and « is

ba = (24)

a measure of the closeness of the neutral marker to the selected block compared to the genetic length of the latter.

X-linked barrier

Let Ur(y,t) and Up;(y,t) denote the fraction of females and males carrying an X-linked introgressed block which contains

the neutral marker in conjunction with y deleterious alleles at time t:
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where d, 1, equals 1 for y = L, and 0 otherwise; v, o equals 1 for y = 0, and 0 otherwise; Spom,r = Z—‘;

Equation (25a) describes how the fraction of females carrying a single X-linked neutral marker associated to an
introgressed block with y deleterious alleles changes over time; and equation (25b) is the equivalent recursion for males.
These equations are of the same form as (13a) and (13b), except that we must account for the fact that the neutral marker
can be associated with the recipient background, i.e. y = 0 (final term in eqs. (25a) and (25b)).

At equilibrium, we have Up(y,t + 1) = Ur(y,t) = Ur(y) and Uy (y,t + 1) = Un(y,t) = Up(y). This allows us to



solve explicitly for the equilibrium frequencies Ur(y) and U, (y):
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These can be rewritten as:
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In this case, the barrier strength is given by:
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This can be calculated explicitly by first solving eq. (26a) for Ur(y) and then substituting into the expression for bx.

This yields the following expression for barrier strength:
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As before, to lowest order in s, m and ¢, this reduces to a much simpler expression:
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where 0x = Z—i is a measure of the strength of coupling between locally deleterious alleles on the X chromosome, and

« is a measure of the closeness of the neutral marker to the selected block compared to the genetic length of the latter.

Connection with the results of Muirhead and Presgraves (2016):

Here we demonstrate that in the limit of very tight linkage between barrier loci, our results for barrier strength reduce to
those of Muirhead and Presgraves (2016), who consider a neutral marker linked to a single incompatible allele. To make

this connection, it is useful to rewrite eq. (31) in terms of r = acp = (2/3)acx, where r is the rate of recombination



between the neutral marker and the nearest selected locus on the X in females:
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In the limit of very tight linkage between loci, i.e., cx — 0, the above expression reduces to bx ~ 1+ (3/2)(Sx/r), where
SX = SxL.
Muirhead and Presgraves (2016) calculate pey and pey,, the permeabilities (i.e., the inverse of the barrier strength) for

a neutral allele linked to a single incompatible allele introduced by a female migrant and a male migrant respectively (see

their equations 3 and 4). These can be used to calculate the total barrier strength as follows: bx = %plf + %pl . In the
limit where evolutionary forces are weak, i.e., s, < 1, such that it is sufficient to retain only lowest order terms in s and
7 in their expressions for pey and pen, the X-linked barrier strength again becomes bx ~ 1+ (3/2)(sx/r). Here sx is the

sex-averaged X-linked selective effect which, in their notation, is simply: sx = %hs + %s.

3. Model extensions: Epistasis among barrier loci

We have assumed in the main text that selection acts independently (i.e., multiplicatively) against incompatible intro-
gressing alleles. However, deleterious interaction between them (i.e. negative epistasis, ¢ < 1) is an important component
of speciation, and is the basis of the seminal DMI model (Dobzhansky 1937; Muller 1940). Therefore, we now consider
the case where a fraction S of the loci act epistatically, and a fraction (1 — ) acts multiplicatively. Following Barton
and Bengtsson (1986), the fitness of an individual with y introgressed alleles is then e_“y_byz, where a = (1 — 8 + Be)s,
b= Bs(1—¢) and € gives the direction and strength of pairwise epistasis (note that when 8 = 0, the fitness of an individual
carrying a block with y equal-effect loci is v(y) = e~ ¥%). When 8 > 0 and € < 1, the fitness of an incompatible block
decreases non-linearly with the number of barrier loci it carries (note that this is quite different from the kind of epistasis

considered in the DMI model).

We evaluated a version of the model where all loci act epistatically (8 = 1), and found that epistasis acts by strongly
decreasing the equilibrium frequency of both autosomes and sex chromosomes as a function of the number of incompatible
loci (when L > 1, blue and red; Figure S5D). Accordingly, the strength of an epistatic multilocus barrier is much stronger
than in the multiplicative case (by a factor ~ 10* with L = 100, a = 0.01 and ¢ = 0.1; Figure S6D). Importantly,
and contrary to the multiplicative model, there is a deficit of autosomal to sex-linked introgression when the number of
deleterious loci is sufficiently large (say L >> 10), which amplifies with the number of incompatible alleles (blue and red;
Figure S5D). The ratio of the equilibrium frequencies between the two chromosome types can be as large as % ~ 12
(with L = 100 and ¢ = 0.1, red; Figure S5D), which leads to an autosomal barrier strength ~ 30 times higher than that
on the sex chromosome (with L = 100, a = 0.01 and ¢ = 0.1, red; Figure S6D). This happens because with epistasis,
the decreased fitness of immigrants and F1 hybrids, which carry entire incompatible blocks, prevails over that of later

generation hybrids (which carry shorter incompatible blocks); and considering that immigrant alleles are selected against



more heavily on autosomes relative to sex chromosomes due to the weaker (hemizygous) selection acting on migrant XY

males (in the absence of dosage compensation).

4. Detailed methods: Individual-based simulations

Simulations were performed with SLiM 3.3 (Haller and Messer 2019) following a Wright—Fisher life cycle. Two constant-size
populations of N = 100,000 sexually-reproducing diploid individuals were simulated with discrete and non-overlapping
generations. For simplicity, we assume a male-heterogametic sexual system (males are XY, and females are XX) with 1: 1
sex-ratio. We model steady migration from the donor into the recipient species by replacing a fraction mp of females and
a fraction my,; of males by immigrants in each generation. Offspring are then generated by drawing a random mother
and a random father according to their fitness. The offspring’s genotype is created from the chosen parents as follows:
the first offspring haploid genome is produced via recombination between the two genomes of the female, and the second
via recombination between the two genomes of the male (except in the case of the X which do not recombine in males).
Once all offspring are generated, the offspring generation becomes the new parental generation. Note that, unlike in the

analytical treatment, an individual might bear multiple introgressed fragments.

Simulated genomic blocks, lying either on an autosome or a X chromosome, carry L equally spaced loci, which are
fixed for different alleles in the two species at the start of the simulations. Recombination occurs at a uniform rate cp
per locus per generation in females (cps in males). The expected number of crossovers per generation, within the entire
block, is thus C' = ¢(L — 1). For each offspring genome, the number of recombination breakpoints is drawn from a Poisson
distribution with mean equal to ¢(L — 1) and their positions are chosen by sampling uniformly along the block. We assume
null recombination between the X and the Y chromosomes in males. Note that the simulation model can be extended to

include epistasis by changing the form of the fitness function.

We followed the average frequency of the deleterious alleles in the recipient species across generations, separately for
sex chromosomes (i.e. py) and autosomes (i.e. p4). Simulations were run for ¢t = 10,000 generations, which is more than
sufficient for migration-selection-recombination balance to be reached. For a given set of parameters, we performed 100
replicate simulations. We then investigate the effect of the selected block as a barrier against neutral gene-flow. Once
migration-selection balance is reached in the recipient species (in practice, after ¢ = 10,000 generations), we introduced
a neutral marker differentially fixed between them at the extremity (“rod” configuration) or in the center (“embedded”
configuration) of the L-locus block. The recombination rate of the neutral marker with the nearest deleterious variant (or
with each of the two surrounding deleterious variants) on the selected block is ac. We calculated the effective migration rate

Urecipient (t+1) —Urecipient (1)

of the neutral allele at equilibrium by monitoring its rate of increase in the recipient species: m, = ,

Udonor —Urecipient (t

where Trecipient(t) and Taonor are the average frequencies of the neutral marker in the recipient and donor species,
respectively (see Figure S3A). Note that Tgonor = 1, since the donor species is fixed for the neutral allele, and migration

is one-way. In practice, we fitted a linear regression to the log of Uyccipient (t) as a function of the number of generations



to estimate its slope (i.e. m.) using the R function “lm” (from package “stats” v3.6.1, R 2013). We calculated its
confidence interval using the R function “confint” from the same package. We based our calculation on the first few

hundred generations that showed a constant rate of increase of the neutral allele.
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SUPPLEMENTARY FIGURES

(A) Intermediate coupling, weak coupling, strong coupling (B) Intermediate coupling: L=1, L=2, L=10, L=100
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Figure S1. Effective number of loci

(A) Effective number of loci, n., plotted against the number of selected loci on the genomic block, L. Colors stand for
values of the coupling coefficient: 6 small (cL = 0.25, x = 0.3, 4 = 0.2; blue), 6 intermediate (cL = 0.05, x = 1.5,
64 = 1; black) and 0 large (cL = 0.025, Ox = 3, 04 = 2; red). (B) Effective number of loci, n., plotted against the
coupling coefficient, . Parameters are scaled such that x = 64 and g”—;‘ = ?—;“, which leads to ne.x = n.a. Colors stand
for the number of selected loci on the block: L =1 (black), L = 2 (green), L = 10 (blue) and L = 100 (red). Autosomes
are depicted with solid lines, ® and O; X chromosomes with dotted lines, A and A. Parameter values are: h = 0.5,

m = 0.001, sL = 0.05, mx/Sx = ma/Sa = 0.02 and N = 10° (simulations).
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(A) Basic model, achiasmy, dosage compensation, (B) Basic model
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Figure S2. Correspondence between autosomal and X-linked frequencies

Average frequency of the deleterious alleles in the recipient species (Autosomal, solid lines: p4; X-linked, dotted lines:
Dy ) plotted against: (A) the coupling coefficient, 8; (B) time in generations, ¢t. Parameters are scaled such that fx = 64
and ‘gX = g4, which leads to px = P4 in the equilibrium distribution (A), and to Px () = P4 (t) in the dynamics (B).
Colors stand for a range of different scenarios: basic model (in (A): 0x =04 = {0.2,1,2}, mx/Sx = m4/S4 = 0.02; in
(B): 0x =04 = 1.5, mx/Sx =ma/Sa = 0.02; black), dosage compensation (0x =04 = {0.2,1,2}, mx/Sx =ma/Sa =
0.02; green), XY male-biased migration (0x = 04 = {0.2,1,2}, mx/Sx = ma/Sa = 0.02; blue), XX female-biased
migration (0x = 04 = {0.2,1,2}, mx/Sx = ma/Sa = 0.02; purple), XY male-biased selection (§x = 64 = {0.3,1.5,3},
mx/Sx =ma/Sa = 0.013; red), ZZ male-biased selection (x = 04 = {0.3,1.5,3}, mx/Sx = ma/S4 = 0.013; orange)
and achiasmy (6x = 04 = {0.4,2,4}, mx/Sx = ma/Sa = 0.02; brown). Note that the number of selected loci on the
block is fixed to L = 10, h = 0.5, N = 10° and that only individual-based simulations are shown. Simulations were run

for (A) 10,000 generations; (B) 1,000 generations.
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Some moderate barriers, a single strong barrier, many weak barriers
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Figure S3. Effect of the number of barrier loci on average equilibrium frequencies and barrier strength at

the neutral marker

Quantities are plotted against the proximity of the neutral marker to its nearest selected locus, . (A) Simulated average
frequency of the neutral allele in the recipient species after 10,000 generations (Autosomal: Ta; X-linked: wx). (B)
Barrier strength at the neutral marker (Autosomal: b4; X-linked: by). (C) the Z—’; ratio. Colors stand for values of
the number of selected loci on the genomic block, L: a single strongly selected locus (blue), ten moderately selected loci

(black) and one hundred weakly selected loci (red). Parameter values are: h = 0.5, m = 0.001, ¢cL = 0.05, sL = 0.05,

mx/Sx =ma/Sa=0.02,0x =15 04 =1 and N = 10° (simulations). Other details match Figure 2.
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(A) Intermediate coupling, very strong coupling
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(B) Intermediate coupling, very strong coupling
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Figure S4. Effect of very strong coupling on average equilibrium frequencies and barrier strength at the

neutral marker

(A) Average frequency of the deleterious alleles in the recipient species (Autosomal: p,; X-linked: Py; their ratio:
%) plotted against the number of selected loci on the genomic block, L. (B) Barrier strength at the neutral marker
(Autosomal: b4; X-linked: bx; their ratio: Z—Z) plotted against its proximity to the nearest selected locus, a. Colors
stand for values of the composite parameter 6 = < at the selected loci. Parameter values for intermediate ¢ are: h = 0.5,
m = 0.001, cL = 0.05, sL = 0.05, mx/Sx = ma/Sa = 0.02, 0x = 1.5, 04 = 1 and N = 10° (simulations). Parameters

for very strong coupling: ¢L = 0.005, 0x = 15, 84 = 10. Other details match Figures 1 and 2.
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(A) Basic model, partial recessivity, full dominance
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(B) With dosage compensation: basic model, partial recessivity, full dominance
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(C) Basic model, negative epistasis, strong negative epistasis
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Figure S5. Effect of model extensions on average equilibrium frequencies

Average frequency of the deleterious alleles in the recipient species (Autosomal: p,; X-linked: Ppy; their ratio: ;—j)
plotted against the number of selected loci on the genomic block, L. (A) Dominance of the deleterious alleles. Results
are shown for a model with co-dominance (h = 0.5, spom L = 0.1, black), and models with partial recessivity (h = 0.1,
ShomL = 0.5, blue) and full dominance (h = 1.0, SpomL = 0.05, red). Note that eq. (4) (lines) is independent of & as long
as sL,cL << 1. (B) Dominance of the deleterious alleles with dosage compensation. Same as in (A) but with sy L = %22
for sex-linked alleles. Blue: h = 0.1, spomL = 0.5, spyL = 0.5 for sex-linked alleles, mx/Sx = 0.005, x = 6. Red:
h = 1.0, spomL = 0.05, sprL = 0.05 for sex-linked alleles, mx/Sx = 0.02, x = 1.5. (C) Epistasis between selected
loci. Results are shown for the basic model (i.e. multiplicative fitness: € = 1, black) and models with negative epistasis
(weak: & = 0.5, blue; strong: ¢ = 0.1, red) in which a fraction § of the loci acts epistatically and a fraction 1 — (3 acts
multiplicatively. Note that we fixed § = 1, and that simulations were not computed. Parameter values for the basic
model are: h = 0.5, m = 0.001, cL = 0.05, sL = 0.05, mx/Sx = ma/Sa = 0.02, 0x = 1.5, 04 = 1 and N = 10°
(simulations). With dosage compensation, values are the same for the basic model, except that: sp; L = 0.1 for sex-linked

alleles, mx /Sx = 0.015, 0x = 2. Other details match Figure 1.
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(A) Basic model, partial recessivity, full dominance

a single strong barrier (L= 1)

b O S N X O . X/A)
A - 1% order approximations: —— ------ i 16 - 1 = 1% order approximations: — ‘
: | :
} - analytical solutions: [ ) A } - analytical solutions: [ ) }
| | | !
100, \simulations: o _ A bt \-simulations: 0
50 -
° L
12 - b
O
10 ©
51 1.0 - o
--------- o]
[ — .
1 L L L L L L La L L L L L L L a
0.01 0.05 0.10 050 1 5 10 0.01 0.05 0.10 0.50 1 5 10
many weak barriers (L= 100)
b b,/b,
50 - 4 225}
Lo 2.00
175
10 1.50
5 125}
1.00 -
L L]
1 L L L L L L oa I L L L L I I a
0.01 0.05 0.10 050 1 5 10 0.01 0.05 0.10 050 1 5 10
(B) With dosage compensation: basic model, partial recessivity, full dominance
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(C) Basic model, negative epistasis, strong negative epistasis

some moderate barriers (L= 10)
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Figure S6. Effect of model extensions on barrier strength at the neutral marker

Barrier strength at the neutral marker (Autosomal: b4; X-linked: bx; their ratio: b—x) plotted against its proximity to

ba

the nearest selected locus, . (A) Dominance of the deleterious alleles (h = 0.5, black; h = 0.1, blue; h = 1.0, red). (B)

Dominance of the deleterious alleles with dosage compensation. Same as in (A) but with sy L = % for sex-linked alleles.

(C) Epistasis between selected loci (multiplicative fitness: ¢ = 1, black; weak negative epistasis: € = 0.5, blue; strong

negative epistasis: € = 0.1, red). Other details match Figure 2 and Figure S5.

18



(A) some moderate barriers (L= 10)
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Figure S7. Effect of the “rod” vs “embedded” configurations on barrier strength at the neutral marker

Barrier strength at the neutral marker (Autosomal: ba; X-linked: bx; their ratio: %) plotted against its proximity to the
nearest selected locus (or to each of the two surrounding loci), @. In (A) the neutral marker is linked to ten moderately
selected loci (L = 10); while in (B) it is linked to one hundred weakly selected loci (L = 100). Filled symbols show results
of individual-based simulations for the case of a marker embedded in the center of the selected block, i.e. j =k = L/2,
where j selected loci lie to the left of the marker, and k£ to the right. Empty symbols show results for a rod marker
configuration, i.e. the marker is positioned at the end of the selected block (j = L and k = 0). Parameter values are:
h = 0.5, m = 0.001, cL = 0.05, sL = 0.05, mx/Sx = ma/Ss =0.02,0x =1.5,04 =1 and N = 10° (simulations). Other

details match Figure 2.
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SUPPLEMENTARY TABLES

Table S1. Predictions for different evolutionary scenarios

autosome X coupling, 6 =
g=0 g=0
h=05 h=0.5
) Ccrpr=cy =c¢ cp=c;cy =0 s . .
Basic model Ox =304 mx =74

mp =my =m

SFp=SmM =S8

Shom,F = Shom,M = % =2s

mp =my =m
SFp=SmM =S8

Shom,F = % =2s

for h=1.0 Shom,F = Shom,M = § SF = SM = Shom,F = §
as basic model as basic model
for h =0.1 Shom,F = Shom,M = 10s Shom,F = 10s
SF =53 5M = Shom,F = 7 HX:(1+ﬁ)6A m)’(‘ :(2+3{/h)%:
Dosage compensation for h =0.5 as basic model SF =53 SM = Shom,F = 25 Ox =204 Tg—;‘ = %’g—:
for h =0.1 Shom,F = Shom,M = 10s SF =53 SM = Shom,r = 10s Ox =604 ?—;:%g—:
Achiasmy ey =0 as basic model Ox = %0 A as basic model
mp =kmy =m mp =kmy =m %:gigg%
Sex-biased migration for k = 3 (9-biased) mp =3my =m mp =3my =m as basic model % = %’g—j
for k =1/3 (Jd'-biased) mp = "M =m mp ="M =m %:%%
SF:kSM:S SF:kSM:S QX:%QA 157;(‘: Egiig%
Sex-biased selection for k = 2 (@-biased) Sp =28y =S Sp =28y =8 Ox = %GA ’g;{‘ = %Tg—:
for k =1/2 (J'-biased) sp="=s sp="=s GX:%GA %:%%

The predicted values of § and & are derived from the analytical solution in eq. (4) (which assumes sL and cL < 1),

and so they are independent of the dominance coefficient (h). See Table 1 for the significance of model parameters.
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