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Review of statistical models of sequence evolution

In models where a sequence is subject only to point substitutions at inde-
pendently evolving sites, the likelihood can be factorized into a product of
small Markov chains (Jukes and Cantor, 1969), solved exactly for an ancestor-
descendant pair by considering the eigenstructure of the matrix exponential
(Kimura, 1980; Hasegawa et al., 1985), and extended to multiple aligned se-
quences by applying the sum-product algorithm to the phylogenetic tree (Felsen-
stein, 1981). These results are widely used in bioinformatics. Latent variables
can be introduced to model rate heterogeneity (Yang, 1995) or selection (Yang
et al., 2000), and the rate parameters estimated efficiently by Expectation-
Maximization (Holmes and Rubin, 2002; Hobolth and Jensen, 2005). The site-
independent point substitution process can be generalized to the case where
substitution rates are influenced by neighboring residues—or where substitu-
tion events simultaneously affect multiple residues—by expanding the matrix
exponential as a Taylor series in neighboring contexts (Lunter and Hein, 2004),
extending to multiple alignments using variational (mean-field) approaches (Jo-
jic et al., 2004; Wexler and Geiger, 2008).

By comparison, continuous-time Markov chain models of the indel process
are tricky. The first—and only exactly-solved—example is the Thorne-Kishino-
Felstenstein (TKF91) model, which allows only single-residue indels. The TKF
model reduces exactly to a linear birth-death process with immigration (Thorne
et al., 1991), which allows the joint distribution over ancestor-descendant se-
quence alignments to be expressed as a Hidden Markov Model (HMM) (Holmes
and Bruno, 2001) that can be formally extended to multiple sequences using
algebraic composition of automata (Steel and Hein, 2001; Hein, 2001; Holmes,
2003; Westesson et al., 2011; Bouchard-Côté, 2013). This allows a statisti-
cal unification of alignment and phylogeny (Lunter et al., 2003; Redelings and
Suchard, 2005; Suchard and Redelings, 2006; Novak et al., 2008; Paten et al.,
2008; Bouchard-Côté et al., 2009; Westesson et al., 2012a,b; Arunapuram et al.,
2013; Herman et al., 2014; Holmes, 2017). However, in practice, the TKF91
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model itself is mostly used for inspiration in such applications, since its restric-
tion to single-residue indel events is not consistent with empirical data (Qian
and Goldstein, 2001; Chang and Benner, 2004; Strope et al., 2006; Cartwright,
2008) and the consequent over-counting of events causes artefacts in statistical
inference of alignments, trees, and rate parameters (Thorne et al., 1992; Hein
et al., 2000; Holmes and Bruno, 2001).

Attempts to generalize the TKF91 model to the more biologically-plausible
case of multiple-residue indel events fall into two categories: those that attempt
to analyze the process from first principles to arrive at finite-time transition
probabilities (Miklós and Toroczkai, 2001; Knudsen and Miyamoto, 2003; Miklós
et al., 2004; Ezawa, 2016c,b,a; De Maio, 2020), and those that guess closed-
form approximations to these probabilities without such ab initio justifications
(Thorne et al., 1992; Mitchison, 1999; Wang et al., 2006; Redelings and Suchard,
2007; Rivas and Eddy, 2008, 2015; Bouchard-Côté and Jordan, 2013). In this
paper we focus on the former type of approach. The latter approaches often
proceed by breaking the sequence into indivisible multiple-residue fragments—
or introducing other latent variables—but lacking any analytic connection of the
fragment sizes or other newly-introduced parameters to the infinitesimal muta-
tion rates of the underlying process, their evaluation in a statistical framework
must necessarily be somewhat heuristic (De Maio, 2020).

Formal mathematical treatment of the multi-residue indel process begins
with Miklós and Toroczkai’s analysis of a model that allows long insertions but
only single-residue deletions (Miklós and Toroczkai, 2001). They developed a
generating function for the gap length distribution, and used the method of
characteristics to solve the associated partial differential equations. Arguably
the most important feature of this model is that the alignment likelihood remains
factorizable and associated with an HMM (albeit one with infinite states). This
remains true for indel processes that allow both insertions and deletions to span
multiple residues, under certain assumptions of spatial homogeneity (Knudsen
and Miyamoto, 2003; Miklós et al., 2004; Ezawa, 2016b), a theoretical result
that helps to justify HMM-based approximations. However, calculating the
transition probabilities of these HMMs from first principles is still nontrivial.
Miklós et al. (2004), formalizing intuition of Knudsen and Miyamoto (2003),
obtained reasonable approximations for short evolutionary time intervals by
calculating exact likelihoods of short trajectories in the continuous-time Markov
process. However, exhaustively enumerating these trajectories is extremely slow,
and effectively impossible for trajectories with more than three overlapping indel
events, so this approach is of limited use.

A recent breakthrough in this area was made by De Maio (2020). Start-
ing from the approximation that the alignment likelihood can be factored into
separate geometric distributions for insertion and deletion lengths, he derived
ordinary differential equations (ODEs) for the evolution of the mean lengths
of these distributions, yielding transition probabilities for the Pair HMM. De
Maio’s method produces more accurate approximations to the multi-residue in-
del process than all previous attempts, though it has limitations: it’s restricted
to models where the insertion and deletion rates are equal, does not (by design)
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include covariation between insertion and deletion lengths in the alignment, is
inexact for the special case of the TKF91 model, and requires laborious manual
derivation of the underlying ODEs.

In this paper, we build on De Maio’s results to develop a systematic differen-
tial calculus for finding HMM-based approximate solutions of continuous-time
Markov processes on strings which are “local” in the sense that the infinitesi-
mal generator is an HMM. Our approach addresses the limitations of De Maio’s
approach, identified in the previous paragraph. It does not require that inser-
tion and deletion rates are equal, or that the process is time-reversible: any
geometric distribution over indel lengths is allowed. It does account for covari-
ation between insertion and deletion gap sizes. The TKF91 model emerges as
a special case and the closed-form solutions to the TKF91 model are exact so-
lutions to our model. Finally, although our equations can be derived without
computational assistance, the analysis is greatly simplified by the use of sym-
bolic algebra packages: both for the manipulation of equations, for which we
used Mathematica (Inc., 2020), and for the manipulation of state machines, for
which we used our recently published software Machine Boss (Silvestre-Ryan
et al., 2020).

The central idea of our approach is that the application of the infinitesi-
mal generator to the approximating HMM generates a more complicated HMM
that, by a suitable coarse-graining operation, can be mapped back to the sim-
pler structure of the approximating HMM. By matching the expected transition
usages of these HMMs, we derive ODEs for the transition probabilities of the
approximator. Our approach is justified by improved results in simulations,
yielding greater accuracy and generality than all previous approaches to this
problem, including De Maio’s moment-based method (which can be seen as a
version of our method that considers only indel-extending transitions in a sym-
metric model). Our approach is further justified by the emergence of the TKF91
model as an exact special case, without the need to introduce any additional
latent variables such as fragment boundaries.

While our focus is on the multi-residue indel process, the generality of the
infinitesimal automata suggests that other local evolutionary models, such as
those allowing neighbor-dependent substitution and indel rates, might also be
productively analyzed using this approach.

Parameterization of evaluated Pair HMMs

This section gives the mapping that we used between the parameters (λ, µ, x, y)
of the GGI model and the transition probabilities of Figure 1, or other model
parameters, for the various approximations that we evaluated. In most cases
these follow De Maio (2020), though we have extended the mapping to allow
for asymmetry between insertions and deletions.
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Figure 1: Machine F(t).
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Long indel model

If the subscript LI denotes a parameter of the Long Indel model then

λLI =
λ

1− x
µLI =

µ

1− y

Parameters x and y may be used unmodified. (Technically, the Long Indel
model is defined in (Miklós et al., 2004) to be reversible, which would constrain
x and y by λLI/µLI = x/y. However, this constraint is not required: the
trajectory calculations can be performed for an irreversible model using exactly
the same algorithms and equations.)

TKF91

a(t) = (1− β)α, b(t) = β, c(t) = (1− β)(1− α),
f(t) = (1− β)α, g(t) = β, h(t) = (1− β)(1− α),
p(t) = (1− γ)α, q(t) = γ, r(t) = (1− γ)(1− α)

where

α = exp(−µ0t)

β =

{
λ0(exp(−λ0t)−exp(−µ0t))
µ0 exp(−λ0t)−λ exp(−µ0t)

λ0 6= µ0
λ0t

1+λ0t
λ0 = µ0

γ = 1− µ0β

λ0(1− α)

λ0 =
λ

1− x
µ0 =

µ

1− y

TKF92

a(t) = ε+ (1− ε)(1− β)α, b(t) = (1− ε)β, c(t) = (1− ε)(1− β)(1− α),
f(t) = (1− ε)(1− β)α, g(t) = εβ, h(t) = (1− ε)(1− β)(1− α),
p(t) = (1− ε)(1− γ)α, q(t) = (1− ε)γ, r(t) = ε(1− γ)(1− α)

where α, β, γ are as defined as in TKF91 and ε = 1
2 (x+ y).

LG05

a(t) = ε+ (1− ε)(1− 2δ), b(t) = (1− ε)δ, c(t) = (1− ε)δ,
f(t) = (1− ε)(1− 2δ), g(t) = ε+ (1− ε)δ, h(t) = (1− ε)δ,
p(t) = (1− ε)(1− 2δ), q(t) = ε+ (1− ε)δ, r(t) = (1− ε)δ
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where

δ = 1− exp

(
− ρt

1− ε

)
ε =

1

2
(x+ y)

ρ =
1

2
(λ+ µ)

RS07

a(t) = ε+ (1− ε)(1− 2δ), b(t) = (1− ε)δ, c(t) = (1− ε)δ,
f(t) = (1− ε)(1− 2δ), g(t) = ε+ (1− ε)δ, h(t) = (1− ε)δ,
p(t) = (1− ε)(1− 2δ), q(t) = ε+ (1− ε)δ, r(t) = (1− ε)δ

where

δ =

1 +
1

1− exp
(
− ρt

1−ε

)
−1

ε =
1

2
(x+ y)

ρ =
1

2
(λ+ µ)

Parameterization via EM

Sufficient statistics for parameterizing the GGI model are

• S, the number of alignments in the dataset;

• n`, the number of sites at which deletions can occur, integrated over time
(`/t is the mean sequence length over the time interval);

• nλ, the number of insertion events that occurred;

• nµ, the number of deletion events that occurred;

• nx, the number of insertion extensions (nx + 1 is the total number of
inserted residues);

• ny, the number of deletion extensions (ny+1 is the total number of deleted
residues).
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Given these statistics, the maximum likelihood parameterization is1

λ̂ = nλ/(n` + S)

µ̂ = nµ/n`

x̂ = nx/(nx + nλ)

ŷ = ny/(ny + nµ)

Let (n̄`, n̄λ, n̄µ, n̄x, n̄y) denote the expectations of the sufficient statistics over
the posterior distribution of histories. The Expectation Maximization algorithm
for continuous-time Markov processes alternates between calculating these pos-
terior expectations for some parameterization (λk, µk, xk, yk) and using them to
find a better parameterization (Holmes and Rubin, 2002; Hobolth and Jensen,
2005; Holmes, 2005; Doss et al., 2013)

λk+1 ← n̄λ/(n̄` + S)

µk+1 ← n̄µ/n̄`

xk+1 ← n̄x/(n̄x + n̄λ)

yk+1 ← n̄y/(n̄y + n̄µ)

In any state path through the machines F, G, and FG, each transition will make
an additive contribution to these statistics. Let n̄Zij [M] denote the contribution

to n̄Z made by transition i→ j of machine M. With reference to the matrix and
diagrammatic representations in the main paper, and by the rules of algebraic
automata composition (Westesson et al., 2011), each state of F(t)G(∆t) can be
written as a tuple (i, j) of a F-state i and a G-state j, and each transition weight
of F(t)G(∆t) takes the form

Qi1j1,i2j2 [F(t)G(∆t)] = Qi1,i2 [F(t)]
τF(i1j1,i2j2)

Qj1,j2 [G(∆t)]
τG(i1j1,i2j2)

where τM(i1j1, i2j2) is 1 if the individual machine M makes a transition as part
of the compound transition (i1, j1) → (i2, j2), and 0 if it does not. Using this,
we can write

n̄Zi1j1,i2j2 [F(t)G(∆t)] = τF(i1j1, i2j2)n̄Zi1,i2 [F(t)] + τG(i1j1, i2j2)n̄Zj1,j2 [G(∆t)]

1The formula for λ assumes that insertions can occur at the start and end of the sequence,
as is usual (Miklós et al., 2004). Strictly, this requires that we specify a start and end state
for G, rather than implicitly assuming infinite-length sequences. Specifically we start G in
the match state, and add transitions to the end state from the insert state with weight 1 − x,
from the delete state with weight 1, and from the match state with weight 1. This can be
extended with rigor throughout the analysis by also specifying start and end states for F and
deriving differential equations for the transitions involving these states. Since it complicates
the presentation to do this, we have omitted it. A heuristic for F that is probably acceptable
for most applications is to start it in the match state, and to allow transitions to the end state
from the insert state with weight 1 − g, from the delete state with weight 1 − q, and from the
match state with weight 1− b. Versions of G and F that introduce start and end states in this
way are shown in the main paper.

7



where

n̄` [G(∆t)] =

 ∆t ∆t ∆t
0 0 0
0 0 0


n̄λ [G(∆t)] =

 0 1 0
0 0 0
0 0 0


n̄µ [G(∆t)] =

 0 0 1
0 0 0
0 0 0


n̄x [G(∆t)] =

 0 0 0
0 1 0
0 0 0


n̄y [G(∆t)] =

 0 0 0
0 0 0
0 0 1


and thus, for k1 ∈ σF

X and k2 ∈ σF
Y ,

n̄Zk1,k2 [F(t+ ∆t)] =
∑

(i1j1)∈σFG
X

∑
(i2j2)∈σFG

Y

Eφ|F(t)G(∆t)

[
Ti1j1,i2j2(φ)

]
Eφ|F(t)G(∆t) [TXY(φ)]

n̄Zi1j1,i2j2 [F(t)G(∆t)]

where E[Tij] is defined in the same way for transitions between individual states
as E[TXY] is defined for transitions between sets of states (e.g. by defining σi ≡
{i} for i ∈ {1 . . .K}). Conjecture. Expanding these equations to first order in
∆t and taking the limit ∆t → 0 leads to ODEs for n̄Zij [F(t)], analogous to the

ODEs for T̄XY(t) given in the main paper, that can be used to fit the parameters
of the infinitesimal generator from unaligned sequence data by weighting the
n̄Zij with the posterior transition usage counts obtained using the Baum-Welch
algorithm.

Higher moments

We here include a few results relating to our model that may be useful, but are
not directly needed to derive the differential equations that govern it.

The matrix method of the main paper can be used to find E[SI] and E[SD]
directly, as well as higher moments. Let X ∈ {I,D} be the diagonal matrix
indicating membership of σX, so Xij = δ(i = j)δ(i ∈ σX). Then
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Eφ|M[SI] = (UIW)11

Eφ|M[SD] = (UDW)11

Eφ|M[S2
I ] = (UI (2UI− 1)W)11

Eφ|M[S2
D ] = (UD (2UD− 1)W)11

Eφ|M[SISD] = (U (DUI + IUD)W)11

In the case of machine F, the first two of these moments have already been
given in the main paper. The others are

Eφ|F[S2
I ] =

(b(1− r) + cq)(f(1− r) + hp)((1 + g)(1− r) + hq)

((1− g)(1− r)− hq)3

Eφ|F[S2
D ] =

(c(1− g) + bh)(p(1− g) + fq)((1− g)(1 + r) + hq)

((1− g)(1− r)− hq)3

Eφ|F[SISD] =
2hq(bf(1− r) + cp(1− g)) + (bhp+ cfq)((1− g)(1− r) + hq)

((1− g)(1− r)− hq)3

These results can also be obtained from the moment generating function for
the joint distribution P (SI, SD|F), which is

F (u, v) =

∞∑
i=0

∞∑
j=0

P (SI = i, SD = j|F)uivj

= G(H(u; g), H(v; r))

G(u, v) = a+
uv(bhp+ cfq) + bfu+ cpv

1− hquv
H(u; g) =

u

1− gu

where G is the generating function for P (T→I, T→D|F) where T→I = TMI+TDI
and T→D = TMD + TID, and H is the generating function for a geometric series.

Discussion

Point substitution models are the foundation of likelihood phylogenetics (Huelsen-
beck and Crandall, 1997; Felsenstein, 2003). There is, additionally, a substan-
tial literature combining such models with HMMs (Yang, 1995; Felsenstein and
Churchill, 1996; Goldman et al., 1996; Liò and Goldman, 1999; Pedersen and
Hein, 2003; Siepel and Haussler, 2004; McCauley and Hein, 2006; Heger et al.,
2009; Nguyen Ba et al., 2012; Dhar et al., 2019) and stochastic context-free
grammars (SCFGs) (Knudsen and Hein, 2003; Pedersen et al., 2004; Holmes,
2004; Westesson and Holmes, 2012; Sksd et al., 2013) for purposes of sequence
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annotation. The development of indel models has been slower, despite evidence
that indels are a potentially powerful signal—for example, selection for phase-
preserving indels is a highly revealing signature of protein-coding genes (Kellis
et al., 2003). This may be, in large part, because integrating alignment and
phylogeny is technically and computationally demanding. Multiple sequence
alignments are a nuisance variable whose point estimation is a tolerable com-
promise when considering substitution processes, although several studies report
that bias due to alignment error is a significant problem in substitution-founded
phylogenetics (Hartmann and Vision, 2008; Sksd et al., 2013; Levy Karin et al.,
2014; Md Mukarram Hossain et al., 2015; Bogusz and Whelan, 2016) that must
be handled with great care to avoid biasing inference (Jordan and Goldman,
2012; Privman et al., 2012; Sela et al., 2015). When it comes to indel-based
analysis, this compromise of conditioning on a single alignment rarely remains
tenable, except perhaps in the “big data” limit, e.g. for closely-related sequences
at genome scale (Lunter et al., 2006; Rands et al., 2014). So indel-based phy-
logenetic inference must often co-sample or otherwise marginalize alignments,
which is inherently harder (Suchard and Redelings, 2006; Novak et al., 2008;
Westesson et al., 2012a; Holmes, 2017). Nevertheless, the inexactitude of ex-
isting long-indel approximations may also have been a contributing obstacle
to their slow adoption in the bioinformatic tool chain. If so, then the results
presented here might help.

Our emphasis on the Generic Geometric Indel model, a continuous-time
Markov process defined on sequences of residues, somewhat disadvantages mod-
els like TKF92, which technically defines a process on sequences of multi-residue
fragments. Our working assumption has been that there is no evidence such in-
divisible fragments really exist, and so we have instead evaluated TKF92 as an
approximation to the GGI model. However, the routine usage of amino acid
fragment models to predict protein tertiary structure (Simons et al., 1999) sug-
gests a valid counter-argument that such models may usefully capture some
forms of selection. Further, TKF92 can be generalized in other ways, allowing
for richer models of fragment mutation; for example to model the evolution of
RNA structure (Holmes, 2004). In this context, it is promising that our method
recovers TKF91 (and therefore TKF92) as special cases.

It seems possible that our method can be applied to other instantaneous
rate models of local evolution where the infinitesimal generator can be repre-
sented as an HMM. It is tempting to speculate that a similar approach may also
be productively applied to SCFGs (Holmes, 2004; Bradley and Holmes, 2009).
Such an approach would be more challenging; for example, elimination of null
states from SCFGs is more complicated than for HMMs. One motivating goal
would be to describe a realistic evolutionary drift process over RNA structures,
with the goal of reconstructing the RNA world (Meyer and Miklós, 2007). It’s
also conceivable that approaches similar to those described here for biological
sequences could be used to analyze phonemes (Bouchard-Côté et al., 2009),
literary texts (Barbrook et al., 1998), music (Cochrane and Gatherer, 2020),
source code (Miller and Myers, 1985), bird songs (Kershenbaum and Garland,
2015), or other alignable sequences that evolve over time.
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